Friday, November 15, 2024
HomenatureEndogenous opioid signalling regulates spinal ependymal cell proliferation

Endogenous opioid signalling regulates spinal ependymal cell proliferation


  • Silver, J. & Miller, J. H. Regeneration past the glial scar. Nat. Rev. Neurosci. 5, 146–156 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tran, A. P., Warren, P. M. & Silver, J. New insights into glial scar formation after spinal wire harm. Cell Tissue Res. 387, 319–336 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johansson, C. B. et al. Identification of a neural stem cell within the grownup mammalian central nervous system. Cell 96, 25–34 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meletis, Okay. et al. Spinal wire harm reveals multilineage differentiation of ependymal cells. PLoS Biol. 6, e182 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sabelström, H. et al. Resident neural stem cells limit tissue harm and neuronal loss after spinal wire harm in mice. Science 342, 637–640 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Barnabé-Heider, F. et al. Origin of latest glial cells in intact and injured grownup spinal wire. Cell Stem Cell 7, 470–482 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Lacroix, S. et al. Central canal ependymal cells proliferate extensively in response to traumatic spinal wire harm however not demyelinating lesions. PLoS ONE 9, e85916 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • New, L. E., Yanagawa, Y., McConkey, G. A., Deuchars, J. & Deuchars, S. A. GABAergic regulation of cell proliferation throughout the grownup mouse spinal wire. Neuropharmacology 223, 109326 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vigh, B., Vigh-Teichmann, I., Manzano e Silva, M. J. & van den Pol, A. N. Cerebrospinal fluid-contacting neurons of the central canal and terminal ventricle in numerous vertebrates. Cell Tissue Res. 231, 615–621 (1983).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, A. L. et al. The cells and logic for mammalian bitter style detection. Nature 442, 934–938 (2006).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Orts-Del’immagine, A. et al. Properties of subependymal cerebrospinal fluid contacting neurones within the dorsal vagal advanced of the mouse brainstem. J. Physiol. 590, 3719–3741 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prendergast, A. E. et al. CSF-contacting neurons reply to Streptococcus pneumoniae and promote host survival throughout central nervous system an infection. Curr. Biol. https://doi.org/10.1016/J.CUB.2023.01.039 (2023).

  • Böhm, U. L. et al. CSF-contacting neurons regulate locomotion by relaying mechanical stimuli to spinal circuits. Nat. Commun. 7, 10866 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sternberg, J. R. et al. Pkd2l1 is required for mechanoception in cerebrospinal fluid-contacting neurons and upkeep of backbone curvature. Nat. Commun. 9, 3804 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Orts-Del’Immagine, A. et al. A single polycystic kidney illness 2-like 1 channel opening acts as a spike generator in cerebrospinal fluid-contacting neurons of grownup mouse brainstem. Neuropharmacology 101, 549–565 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Johnson, E. et al. Graded spikes differentially sign neurotransmitter enter in cerebrospinal fluid contacting neurons of the mouse spinal wire. iScience 26, 105914 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gerstmann, Okay. et al. The function of intraspinal sensory neurons within the management of quadrupedal locomotion. Curr. Biol. 32, 2442–2453.e4 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Djenoune, L. et al. The twin developmental origin of spinal cerebrospinal fluid-contacting neurons offers rise to distinct practical subtypes. Sci Rep. 7, 719 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakamura, Y. et al. Cerebrospinal fluid-contacting neuron tracing reveals structural and practical connectivity for locomotion within the mouse spinal wire. eLife 12, e83108 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stoeckel, M.-E. et al. Cerebrospinal fluid-contacting neurons within the rat spinal wire, a γ-aminobutyric acidergic system expressing the P2X2 subunit of purinergic receptors, PSA-NCAM, and GAP-43 immunoreactivities: mild and electron microscopic research. J. Comp. Neurol. 457, 159–174 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Chavkin, C. Dynorphin — nonetheless an awfully potent opioid peptide. Mol. Pharmacol. 83, 729–736 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khachaturian, H. et al. Dynorphin immunocytochemistry within the rat central nervous system. Peptides 3, 941–954 (1982).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Veldman, M. B. et al. Brainwide genetic sparse cell labeling to light up the morphology of neurons and glia with Cre-dependent MORF mice. Neuron 108, 111–127.e6 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Furube, E. et al. Neural stem cell phenotype of tanycyte-like ependymal cells within the circumventricular organs and central canal of grownup mouse mind. Sci. Rep. 10, 2826 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brust, T. F. Biased ligands on the κ opioid receptor: fine-tuning receptor pharmacology. Handb. Exp. Pharmacol. 271, 115–135 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bruchas, M. R. & Chavkin, C. Kinase cascades and ligand-directed signaling on the κ opioid receptor. Psychopharmacology 210, 137–147 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eriksson, P. S., Nilsson, M., Wågberg, M., Hansson, E. & Rönnbäck, L. κ-Opioid receptors on astrocytes stimulate l-type Ca2+ channels. Neuroscience 54, 401–407 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gurwell, J. A. et al. κ-Opioid receptor expression defines a phenotypically distinct subpopulation of astroglia: relationship to Ca2+ mobilization, improvement, and the antiproliferative impact of opioids. Mind Res. 737, 175–187 (1996).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pan, Z. Z. Opioid receptor-mediated enhancement of the hyperpolarization-activated present (Ih) by means of mobilization of intracellular calcium in rat nucleus raphe magnus. J. Physiol. 548, 765–775 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lai, J. et al. Dynorphin A prompts bradykinin receptors to take care of neuropathic ache. Nat. Neurosci. 9, 1534–1540 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Laughlin, T. M. et al. Spinally administered dynorphin A produces long-lasting allodynia: involvement of NMDA however not opioid receptors. Ache 72, 253–260 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bakshi, R. & Faden, A. I. Aggressive and non-competitive NMDA antagonists restrict dynorphin A-induced rat hindlimb paralysis. Mind Res. 507, 1–5 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, S. et al. Dynorphin A as a possible endogenous ligand for 4 members of the opioid receptor gene household. J. Pharmacol. Exp. Ther. 286, 136–141 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • Riondel, P. et al. Proof for 2 subpopulations of cerebrospinal-fluid contacting neurons with reverse GABAergic signaling in grownup mouse spinal wire. J. Neurosci. https://doi.org/10.1523/JNEUROSCI.2289-22.2024 (2024).

  • Corns, L. F. et al. Cholinergic enhancement of cell proliferation within the postnatal neurogenic area of interest of the mammalian spinal wire. Stem Cells 33, 2864–2876 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hussein, S. A. Practical characterization of the TRP-type channel PKD2L1. ERA https://doi.org/10.7939/R3P84495F (2015).

  • Felix, R. Molecular regulation of voltage-gated Ca2+ channels. J. Recept. Sign Transduct. 25, 57–71 (2008).

    Article 

    Google Scholar
     

  • Barber, R. P., Vaughn, J. E. & Roberts, E. The cytoarchitecture of GABAergic neurons in rat spinal wire. Mind Res. 238, 305–328 (1982).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Djenoune, L. et al. Investigation of spinal cerebrospinal fluid-contacting neurons expressing PKD2L1: proof for a conserved system from fish to primates. Entrance. Neuroanat. 8, 26 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matson, Okay. J. E. et al. Single cell atlas of spinal wire harm in mice reveals a pro-regenerative signature in spinocerebellar neurons. Nat. Commun. 13, 5628 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren, Y. et al. Ependymal cell contribution to scar formation after spinal wire harm is minimal, native and depending on direct ependymal harm. Sci Rep. 7, 41122 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Corns, L. F., Deuchars, J. & Deuchars, S. A. GABAergic responses of mammalian ependymal cells within the central canal neurogenic area of interest of the postnatal spinal wire. Neurosci. Lett. 553, 57–62 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kozono, H., Yoshitani, H. & Nakano, R. Submit-marketing surveillance research of the protection and efficacy of nalfurafine hydrochloride (Remitch® capsules 2.5 μg) in 3,762 hemodialysis sufferers with intractable pruritus. Int. J. Nephrol. Renovasc. Dis. 11, 9–24 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bloodgood, D. W. et al. κ Opioid receptor and dynorphin signaling within the central amygdala regulates alcohol consumption. Mol. Psychiatry 26, 2187–2199 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Madisen, L. et al. A sturdy and high-throughput Cre reporting and characterization system for the entire mouse mind. Nat. Neurosci. 13, 133–140 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krashes, M. J. et al. An excitatory paraventricular nucleus to AgRP neuron circuit that drives starvation. Nature 507, 238–242 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gee, J. M. et al. Imaging exercise in neurons and glia with a Polr2a-based and Cre-dependent GCaMP5G-IRES-tdTomato reporter mouse. Neuron 83, 1058–1072 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buch, T. et al. A Cre-inducible diphtheria toxin receptor mediates cell lineage ablation after toxin administration. Nat. Strategies 2, 419–426 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arnold, Okay. et al. Sox2+ grownup stem and progenitor cells are essential for tissue regeneration and survival of mice. Cell Stem Cell 9, 317–329 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Edelstein, A. D. et al. Superior strategies of microscope management utilizing μManager software program. J. Biol. Strategies 1, e10 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Renier, N. et al. iDISCO: a easy, speedy methodology to immunolabel giant tissue samples for quantity imaging. Cell 159, 896–910 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments