Schapiro, A. C., Rogers, T. T., Cordova, N. I., Turk-Browne, N. B. & Botvinick, M. M. Neural representations of occasions come up from temporal neighborhood construction. Nat. Neurosci. 16, 486–492 (2013).
Garvert, M. M., Dolan, R. J. & Behrens, T. E. J. A map of summary relational data within the human hippocampal–entorhinal cortex. eLife 6, e17086 (2017).
Bellmund, J. L., Deuker, L. & Doeller, C. F. Mapping sequence construction within the human lateral entorhinal cortex. eLife 8, e45333 (2019).
Baram, A. B. et al. Entorhinal and ventromedial prefrontal cortices summary and generalize the construction of reinforcement studying issues. Neuron 109, 713–723.e7 (2021).
Garvert, M. M., Saanum, T., Schulz, E., Schuck, N. W. & Doeller, C. F. Hippocampal spatio-predictive cognitive maps adaptively information reward generalization. Nat. Neurosci. 26, 615–626 (2023).
Tolman, E. C. Cognitive maps in rats and males. Psychol. Rev. 55, 189–208 (1948).
Whittington, J. C. R., Mccaffary, D., Bakermans, J. J. W. & Behrens, T. E. J. Find out how to construct a cognitive map. Nat. Neurosci. 25, 1257–1272 (2022).
O’Keefe, J. & Dostrovsky, J. The hippocampus as a spatial map. Preliminary proof from unit exercise within the freely-moving rat. Mind Res. 34, 171–175 (1971).
Ekstrom, A. D. et al. Mobile networks underlying human spatial navigation. Nature 425, 184–188 (2003).
Hafting, T., Fyhn, M., Molden, S., Moser, M.-B. & Moser, E. I. Microstructure of a spatial map within the entorhinal cortex. Nature 436, 801–806 (2005).
Jacobs, J. et al. Direct recordings of grid-like neuronal exercise in human spatial navigation. Nat. Neurosci. 16, 1188–1190 (2013).
Aronov, D., Nevers, R. & Tank, D. W. Mapping of a non-spatial dimension by the hippocampal–entorhinal circuit. Nature 543, 719–722 (2017).
Fried, I., Macdonald, Ok. A. & Wilson, C. L. Single neuron exercise in human hippocampus and amygdala throughout recognition of faces and objects. Neuron 18, 753–765 (1997).
Constantinescu, A. O., O’Reilly, J. X. & Behrens, T. E. J. Organizing conceptual data in people with a gridlike code. Science 352, 1464–1468 (2016).
Pastalkova, E., Itskov, V., Amarasingham, A. & Buzsáki, G. Internally generated cell meeting sequences within the rat hippocampus. Science 321, 1322–1327 (2008).
MacDonald, C. J., Lepage, Ok. Q., Eden, U. T. & Eichenbaum, H. Hippocampal “time cells” bridge the hole in reminiscence for discontiguous occasions. Neuron 71, 737–749 (2011).
Stachenfeld, Ok. L., Botvinick, M. M. & Gershman, S. J. The hippocampus as a predictive map. Nat. Neurosci. 20, 1643–1653 (2017).
Gershman, S. J. The successor illustration: its computational logic and neural substrates. J. Neurosci. 38, 7193–7200 (2018).
Momennejad, I. Studying buildings: predictive representations, replay, and generalization. Curr. Opin. Behav. Sci. 32, 155–166 (2020).
George, T. M., de Cothi, W., Stachenfeld, Ok. & Barry, C. Speedy studying of predictive maps with STDP and theta part precession. eLife 12, e80663 (2023).
Nagahama, Y. et al. End result of stereo-electroencephalography with single-unit recording in drug-refractory epilepsy. J. Neurosurg. 139, 1588–1597 (2023).
Quian Quiroga, R., Reddy, L., Kreiman, G. & Koch, C. Invariant visible illustration by single neurons within the human mind. Nature 435, 1102–1107 (2005).
Suthana, N. & Fried, I. Percepts to recollections: insights from single neuron recordings within the human mind. Tendencies Cogn. Sci. 16, 427–436 (2012).
Bi, G.-Q. & Poo, M.-M. Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic power, and postsynaptic cell kind. J. Neurosci. 18, 10464–10472 (1998).
Skaggs, W. E. & McNaughton, B. L. Replay of neuronal firing sequences in rat hippocampus throughout sleep following spatial expertise. Science 271, 1870–1873 (1996).
Wilson, M. A. & McNaughton, B. L. Reactivation of hippocampal ensemble reminiscences throughout sleep. Science 265, 676–679 (1994).
Foster, D. J. & Wilson, M. A. Reverse replay of behavioural sequences in hippocampal place cells through the awake state. Nature 440, 680–683 (2006).
Ison, M. J., Quian Quiroga, R. & Fried, I. Speedy encoding of latest reminiscences by particular person neurons within the human mind. Neuron 87, 220–230 (2015).
De Falco, E., Ison, M. J., Fried, I. & Quian Quiroga, R. Lengthy-term coding of private and common associations underlying the reminiscence internet within the human mind. Nat. Commun. 7, 13408 (2016).
Dusek, J. A. & Eichenbaum, H. The hippocampus and reminiscence for orderly stimulus relations. Proc. Natl Acad. Sci. USA 94, 7109–7114 (1997).
Eichenbaum, H. & Cohen, N. J. Can we reconcile the declarative reminiscence and spatial navigation views on hippocampal perform? Neuron 83, 764–770 (2014).
Bartlett, F. C. Remembering: A Research in Experimental and Social Psychology (Cambridge Univ. Press, 1932).
Harlow, H. F. The formation of studying units. Psychol. Rev. 56, 51–65 (1949).
Behrens, T. E. J. et al. What’s a cognitive map? Organizing data for versatile conduct. Neuron 100, 490–509 (2018).
Whittington, J. C. R. et al. The Tolman-Eichenbaum machine: unifying area and relational reminiscence by way of generalization within the hippocampal formation. Cell 183, 1249–1263.e23 (2020).
Ólafsdóttir, H. F., Bush, D. & Barry, C. The function of hippocampal replay in reminiscence and planning. Curr. Biol. 28, R37–R50 (2017).
Eichenlaub, J.-B. et al. Replay of discovered neural firing sequences throughout relaxation in human motor cortex. Cell Rep. 31, 107581 (2020).
Liu, Y., Dolan, R. J., Kurth-Nelson, Z. & Behrens, T. E. J. Human replay spontaneously reorganizes expertise. Cell 178, 640–652 (2019).
Schwartenbeck, P. et al. Generative replay underlies compositional inference within the hippocampal-prefrontal circuit. Cell 186, 4885–4897 (2023).
Schapiro, A. C., Mcdevitt, E. A., Rogers, T. T., Mednick, S. C. & Norman, Ok. A. Human hippocampal replay throughout relaxation prioritizes weakly discovered info and predicts reminiscence efficiency. Nat. Commun. 9, 3920 (2018).
Vaz, A. P., Wittig, J. H., Inati, S. Ok. & Zaghloul, Ok. A. Replay of cortical spiking sequences throughout human reminiscence retrieval. Science 367, 1131–1134 (2020).
Norman, Y. et al. Hippocampal sharp-wave ripples linked to visible episodic recollection in people. Science 365, 1–14 (2019).
Schapiro, A. C., Kustner, L. V. & Turk-Browne, N. B. Shaping of object representations within the human medial temporal lobe based mostly on temporal regularities. Curr. Biol. 22, 1622–1627 (2012).
Schapiro, A. C., Gregory, E., Landau, B., McCloskey, M. & Turk-Browne, N. B. The need of the medial temporal lobe for statistical studying. J. Cogn. Neurosci. 26, 1736–1747 (2017).
Henin, S. et al. Studying hierarchical sequence representations throughout human cortex and hippocampus. Sci. Adv. 7, eabc4530 (2021). 19.
Fried, I. et al. Cerebral microdialysis mixed with single-neuron and electroencephalographic recording in neurosurgical sufferers. J. Neurosurg. 91, 697–705 (1999).
Brainard, D. H. The psychophysics toolbox. Spat. Imaginative and prescient 10, 433–436 (1997).
Quiroga, R. Q., Nadasdy, Z. & Ben-Shaul, Y. Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural Comput. 16, 1661–1687 (2004).
Hill, D. N., Mehta, S. B. & Kleinfeld, D. High quality metrics to accompany spike sorting of extracellular indicators. J. Neurosci. 31, 8699–8705 (2011).
Meyers, E. M. The neural decoding toolbox. Entrance. Neuroinform. 7, 8 (2013).
Estrada, E. & Hatano, N. Communicability in complicated networks. Phys. Rev. E 77, 036111 (2008).
Guyonneau, R., VanRullen, R. & Thorpe, S. J. Neurons tune to the earliest spikes by way of STDP. Neural Comput. 17, 859–879 (2005).