Abeysekara, A. et al. Very-high-energy particle acceleration powered by the jets of the microquasar SS 433. Nature 562, 82–85 (2018).
Abdalla, H. et al. Acceleration and transport of relativistic electrons within the jets of the microquasar SS 433. Science 383, 402–406 (2024).
MacDonald, R. Ok. D. et al. The black gap binary V4641 Sagitarii: exercise in quiescence and improved mass determinations. Astrophys. J. 784, 2 (2014).
Gaia, C. et al. Gaia Knowledge Launch 2. Abstract of the contents and survey properties. Astron. Astrophys. 616, A1 (2018).
in ’t Zand, J. et al. SAX J1819.3-2525. Worldwide Astronomical Union Round, No. 7119, #1 (1999).
Abdalla, H. et al. A seek for very high-energy flares from the microquasars GRS 1915+105, Circinus X-1, and V4641 Sgr utilizing contemporaneous H.E.S.S. and RXTE observations. Astron. Astrophys. 612, A10 (2018).
Escobar, G. J., Pellizza, L. & Romero, G. E. Cosmic-ray manufacturing from neutron escape in microquasar jets. Astron. Astrophys. 650, A136 (2021).
Fender, R., Maccarone, T. & Van Kesteren, Z. Energization of interstellar media and cosmic ray manufacturing by jets from X-ray binaries. Mon. Not. R. Astron. Soc. 360, 1085–1090 (2005).
Romero, G. E. & Vila, G. S. The proton low-mass microquasar: high-energy emission. Astron. Astrophys. 485, 623–631 (2008).
Abeysekara, A. et al. The Excessive-Altitude Water Cherenkov (HAWC) observatory in México: the first detector. Nucl. Instrum. Strategies Phys. Res. A 1052, 168253 (2023).
Revnivtsev, M., Sunyaev, R., Gilfanov, M. & Churazov, E. V4641Sgr—a super-Eddington supply enshrouded by an prolonged envelope. Astron. Astrophys. 385, 904–908 (2002).
Lindstrøm, C. et al. New clues on outburst mechanisms and improved spectroscopic parts of the black gap binary V4641 Sagittarii. Mon. Not. R. Astron. Soc. 363, 882–890 (2005).
Gallo, E., Plotkin, R. M. & Jonker, P. G. V4641 Sgr: a candidate precessing microblazar. Mon. Not. R. Astron. Soc. Lett. 438, L41–L45 (2013).
Aharonian, F. & Atoyan, A. Gamma rays from galactic sources with relativistic jets. New Astron. Rev. 42, 579–584 (1998).
Heinz, S. & Sunyaev, R. Cosmic rays from microquasars: a slim part to the CR spectrum? Astron. Astrophys. 390, 751–766 (2002).
Aharonian, F. A. Very Excessive Vitality Cosmic Gamma Radiation. A Essential Window on the Excessive Universe (World Scientific, 2004).
IceCube Collaboration. Remark of high-energy neutrinos from the galactic aircraft. Science 380, 1338–1343 (2023).
Margon, B. Observations of SS 433. Annu. Rev. Astron. Astrophys. 22, 507–536 (1984).
Corbel, S. et al. Giant-scale, decelerating, relativistic X-ray jets from the microquasar XTE J1550-564. Science 298, 196–199 (2002).
Gallo, E. et al. A darkish jet dominates the ability output of the stellar black gap Cygnus X-1. Nature 436, 819–821 (2005).
Promote, P. H. et al. Parsec-scale bipolar X-ray shocks produced by highly effective jets from the neutron star Circinus X-1. Astrophys. J. Lett. 719, L194–L198 (2010).
Pakull, M. W., Soria, R. & Motch, C. A 300-parsec-long jet-inflated bubble round a strong microquasar within the galaxy NGC 7793. Nature 466, 209–212 (2010).
Fabrika, S. The jets and supercritical accretion disk in SS 433. Astrophys. House Phys. Rev. 12, 1–152 (2004).
Pakull, M. W. & Mirioni, L. Bubble nebulae round ultraluminous X-ray sources. In Proc. Winds, Bubbles, and Explosions: A Convention to Honor John Dyson (eds Arthur, S. J. & Henney, W. J.) 197–199 (2003).
Berghea, C. T. et al. Detection of a radio bubble across the ultraluminous X-ray supply Holmberg IX X-1. Astrophys. J. 896, 117 (2020).
Kaaret, P., Feng, H. & Roberts, T. P. Ultraluminous X-ray sources. Annu. Rev. Astron. Astrophys. 55, 303–341 (2017).
Mirabel, I. F. & Rodríguez, L. F. Sources of relativistic jets within the galaxy. Annu. Rev. Astron. Astrophys. 37, 409–443 (1999).
Salvesen, G. & Pokawanvit, S. Origin of spin–orbit misalignments: the microblazar V4641 Sgr. Mon. Not. R. Astron. Soc. 495, 2179–2204 (2020).
Heinz, S. & Sunyaev, R. A. Cosmic rays from microquasars: a slim part to the CR spectrum? Astron. Astrophys. 390, 751–766 (2002).
Cooper, A. J., Gaggero, D., Markoff, S. & Zhang, S. Excessive-energy cosmic ray manufacturing in X-ray binary jets. Mon. Not. R. Astron. Soc. 493, 3212–3222 (2020).
Albert, A. et al. Efficiency of the HAWC Observatory and TeV gamma-ray measurements of the Crab Nebula with improved intensive air bathe reconstruction algorithms. Astrophys. J. 972, 144 (2024).
Abeysekara, A. et al. Measurement of the Crab Nebula spectrum previous 100 TeV with HAWC. Astrophys. J. 881, 134 (2019).
Vianello, G. et al. The Multi-Mission Most Probability framework (3ML). Preprint at https://arxiv.org/abs/1507.08343 (2015).
Younk, P. W. et al. A high-level evaluation framework for HAWC. In Proc. thirty fourth Worldwide Cosmic Ray Convention (ICRC2015) 948 (2015).
Abeysekara, A. U. et al. Characterizing gamma-ray sources with HAL (HAWC accelerated chance) and 3ML. In Proc. thirty seventh Worldwide Cosmic Ray Convention (ICRC2021) 828 (2022).
Atkins, R. et al. Remark of TeV gamma rays from the Crab Nebula with Milagro utilizing a brand new background rejection method. Astrophys. J. 595, 803–811 (2003).
Abeysekara, A. et al. Remark of the Crab Nebula with the HAWC gamma-ray observatory. Astrophys. J. 843, 39 (2017).
Ackermann, M. et al. Seek for prolonged sources within the galactic aircraft utilizing six years of Fermi-Giant Space Telescope cross 8 information above 10 GeV. Astrophys. J. 843, 139 (2017).
Kass, R. E. & Raftery, A. E. Bayes elements. J. Am. Stat. Assoc. 90, 773–795 (1995).
Liddle, A. R. Data standards for astrophysical mannequin choice. Mon. Not. R. Astron. Soc. Lett. 377, L74–L78 (2007).
Bozdogan, H. Mannequin choice and Akaike’s data criterion (AIC): the final principle and its analytical extensions. Psychometrika 52, 345–370 (1987).
Abeysekara, A. et al. Prolonged gamma-ray sources round pulsars constrain the origin of the positron flux at Earth. Science 358, 911–914 (2017).
Abeysekara, A. et al. HAWC observations of the acceleration of very-high-energy cosmic rays within the Cygnus Cocoon. Nat. Astron. 5, 465–471 (2021).
Albert, A. et al. 3HWC: the third HAWC catalog of very-high-energy gamma-ray sources. Astrophys. J. 905, 76 (2020).
Abdalla, H. et al. The H.E.S.S. Galactic aircraft survey. Astron. Astrophys. 612, A1 (2018).
Abdollahi, S. et al. Incremental Fermi Giant Space Telescope fourth supply catalog. Astrophys. J. Suppl. Ser. 260, 53 (2022).
Liu, Q. Z., van Paradijs, J. & van den Heuvel, E. P. J. Catalogue of high-mass X-ray binaries within the Galaxy. Astron. Astrophys. 455, 1165–1168 (2006).
Liu, Q. Z., van Paradijs, J. & van den Heuvel, E. P. J. A listing of low-mass X-ray binaries within the Galaxy, LMC, and SMC (Fourth version). Astron. Astrophys. 469, 807–810 (2007).
Ritter, H. & Kolb, U. Catalogue of cataclysmic binaries, low-mass X-ray binaries and associated objects (Seventh version). Astron. Astrophys. 404, 301–303 (2003).
Tanaka, Y. & Lewin, W. H. G. in X-ray Binaries (eds Lewin, W. H. G., van Paradijs, J. & van den Heuvel, E. P. J.) 126 (Cambridge Univ. Press, 1995).
Krivonos, R. et al. INTEGRAL/IBIS nine-year Galactic exhausting X-ray survey. Astron. Astrophys. 545, A27 (2012).
Fowl, A. et al. The IBIS tender gamma-ray sky after 1000 INTEGRAL orbits. Astrophys. J. Suppl. Ser. 223, 15 (2016).
Oh, Ok. et al. The 105-month Swift-BAT all-sky exhausting X-ray survey. Astrophys. J. Suppl. Ser. 235, 4 (2018).
Matsuoka, M. et al. The MAXI mission on the ISS: science and devices for monitoring all-sky X-ray photos. Publ. Astron. Soc. Jpn. 61, 999–1010 (2009).
Shaw, A. et al. Excessive decision X-ray spectroscopy of V4641 Sgr throughout its 2020 outburst. Mon. Not. R. Astron. Soc. 516, 124–137 (2022).
Revnivtsev, M., Gilfanov, M., Churazov, E. & Sunyaev, R. Tremendous-Eddington outburst of V4641 Sgr. Astron. Astrophys. 391, 1013–1022 (2002).
Koljonen, Ok. I. I. & Tomsick, J. A. The obscured X-ray binaries V404 Cyg, Cyg X-3, V4641 Sgr, and GRS 1915+105. Astron. Astrophys. 639, A13 (2020).
Hjellming, R. et al. Mild curves and radio construction of the 1999 September transient occasion in V4641 Sagittarii (=XTE J1819–254=SAX J1819.3–2525). Astrophys. J. 544, 977 (2000).
Orosz, J. A. et al. A black gap within the superluminal supply SAX J1819.3–2525 (V4641 Sgr). Astrophys. J. 555, 489 (2001).
Chaty, S. et al. Optical and near-infrared observations of the microquasar V4641 Sgr in the course of the 1999 September outburst. Mon. Not. R. Astron. Soc. 343, 169–174 (2003).
Dame, T. M., Hartmann, D. & Thaddeus, P. The Milky Manner in molecular clouds: a brand new full CO survey. Astrophys. J. 547, 792–813 (2001).
Dame, T. M. & Thaddeus, P. A CO survey of your entire northern sky. Astrophys. J. Suppl. Ser. 262, 5 (2022).
Kalberla, P. M. et al. The Leiden/Argentine/Bonn (LAB) survey of galactic HI-final information launch of the mixed LDS and IAR surveys with improved stray-radiation corrections. Astron. Astrophys. 440, 775–782 (2005).
Maitra, D. & Bailyn, C. D. X-ray observations of V4641 SGR (SAX J1819.3–2525) in the course of the transient and violent outburst of 2003. Astrophys. J. 637, 992 (2006).
Pahari, M., Misra, R., Dewangan, G. C. & Pawar, P. Constraining distance and inclination angle of V4641 Sgr utilizing SWIFT and NuSTAR observations throughout low tender spectral state. Astrophys. J. 814, 158 (2015).
Clemens, D. P. Massachusetts–Stony Brook galactic aircraft CO survey: the Galactic disk rotation curve. Astrophys. J. 295, 422–428 (1985).
Gabici, S., Aharonian, F. A. & Casanova, S. Broad-band non-thermal emission from molecular clouds illuminated by cosmic rays from close by supernova remnants. Mon. Not. R. Astron. Soc. 396, 1629–1639 (2009).