Landau, L. Idea of the superfluidity of helium ii. Phys. Rev. 60, 356–358 (1941).
Landau, L. On the speculation of superfluidity of helium ii. J. Phys. 11, 91–92 (1947).
Feynman, R. P. & Cohen, M. Power spectrum of the excitations in liquid helium. Phys. Rev. 102, 1189–1204 (1956).
Henshaw, D. G. & Woods, A. D. B. Modes of atomic motions in liquid helium by inelastic scattering of neutrons. Phys. Rev. 121, 1266–1274 (1961).
Godfrin, H. et al. Statement of a roton collective mode in a two-dimensional Fermi liquid. Nature 483, 576–579 (2012).
Donnelly, R. Rotons: a low-temperature puzzle. Phys. World 10, 25–30 (1997).
Nozières, P. Is the roton in superfluid 4He the ghost of a Bragg spot? J. Low Temp. Phys. 137, 45–67 (2004).
Bobrov, V., Set off, S. & Litinski, D. Universality of the phonon-roton spectrum in liquids and superfluidity of 4He. Z. Naturforsch. A 71, 565–575 (2016).
Girvin, S. M., MacDonald, A. H. & Platzman, P. M. Magneto-roton idea of collective excitations within the fractional quantum Corridor impact. Phys. Rev. B 33, 2481–2494 (1986).
Kukushkin, I. V., Smet, J. H., Scarola, V. W., Umansky, V. & von Klitzing, Ok. Dispersion of the excitations of fractional quantum Corridor states. Science 324, 1044–1047 (2009).
Mottl, R. et al. Roton-type mode softening in a quantum gasoline with cavity-mediated long-range interactions. Science 336, 1570–1573 (2012).
Chomaz, L. et al. Statement of roton mode inhabitants in a dipolar quantum gasoline. Nat. Phys. 14, 442–446 (2018).
Mukherjee, B. et al. Crystallization of bosonic quantum Corridor states in a rotating quantum gasoline. Nature 601, 58–62 (2022).
Apaja, V., Halinen, J., Halonen, V., Krotscheck, E. & Saarela, M. Charged-boson fluid in two and three dimensions. Phys. Rev. B 55, 12925–12945 (1997).
De Palo, S., Conti, S. & Moroni, S. Monte Carlo simulations of two-dimensional charged bosons. Phys. Rev. B 69, 035109 (2004).
Kalman, G. J., Hartmann, P., Golden, Ok. I., Filinov, A. & Donkó, Z. Correlational origin of the roton minimal. Europhys. Lett. 90, 55002 (2010).
Kalman, G. J., Kyrkos, S., Golden, Ok. I., Hartmann, P. & Donkó, Z. The roton minimal: is it a common characteristic of strongly correlated liquids? Contrib. Plasma Phys. 52, 219–223 (2012).
Dorheim, T., Moldabekov, Z., Vorberger, J., Kählert, H. & Bonitz, M. Digital pair alignment and roton characteristic within the heat dense electron gasoline. Commun. Phys. 5, 304 (2022).
Lu, H., Chen, B.-B., Wu, H.-Q., Solar, Ok. & Meng, Z. Y. Thermodynamic response and impartial excitations in integer and fractional quantum anomalous Corridor states rising from correlated flat bands. Phys. Rev. Lett. 132, 236502 (2024).
Wigner, E. On the interplay of electrons in metals. Phys. Rev. 46, 1002–1010 (1934).
Tanatar, B. & Ceperley, D. M. Floor state of the two-dimensional electron gasoline. Phys. Rev. B 39, 5005–5016 (1989).
De Palo, S., Rapisarda, F. & Senatore, G. Excitonic condensation in a symmetric electron-hole bilayer. Phys. Rev. Lett. 88, 206401 (2002).
Spivak, B. & Kivelson, S. A. Section intermediate between a two-dimensional electron liquid and Wigner crystal. Phys. Rev. B 70, 155114 (2004).
Hartmann, P., Donkó, Z. & Kalman, G. J. Construction and part diagram of strongly-coupled bipolar charged-particle bilayers. Europhys. Lett. 72, 396–402 (2005).
Lozovik, Y. E. & Yudson, V. I. A brand new mechanism for superconductivity: pairing between spatially separated electrons and holes. Sov. Phys. JETP 44, 738–753 (1976).
Balatsky, A. V., Joglekar, Y. N. & Littlewood, P. B. Dipolar superfluidity in electron-hole bilayer programs. Phys. Rev. Lett. 93, 266801 (2004).
Joglekar, Y. N., Balatsky, A, V. & Das Sarma, S. Wigner supersolid of excitons in electron-hole bilayers. Phys. Rev. B 74, 233302 (2006).
Glyde, H. R. & Griffin, A. Zero sound and atomiclike excitations: the character of phonons and rotons in liquid 4He. Phys. Rev. Lett. 65, 1454–1457 (1990).
Filinov, A. & Bonitz, M. Collective and single-particle excitations in two-dimensional dipolar Bose gases. Phys. Rev. A 86, 063628 (2012).
De Dycker, E. & Phariseau, P. On the LCAO-method for disordered supplies. I. Basic idea. Physica 34, 325–332 (1967).
De Dycker, E. & Phariseau, P. On the LCAO-method for disordered supplies. II. Software to some easy fashions. Physica 35, 405–416 (1967).
Kim, J. et al. Statement of tunable band hole and anisotropic Dirac semimetal state in black phosphorus. Science 349, 723–726 (2015).
Ryu, S. H. et al. Pseudogap in a crystalline insulator doped by disordered metals. Nature 596, 68–73 (2021).
Kiraly, B. et al. Anisotropic two-dimensional screening on the floor of black phosphorus. Phys. Rev. Lett. 123, 216403 (2019).
Baumberger, F., Auwärter, W., Greber, T. & Osterwalder, J. Electron coherence in a melting lead monolayer. Science 306, 2221–2224 (2004).
Rotenberg, E., Theis, W., Horn, Ok. & Gille, P. Quasicrystalline valence bands in decagonal AlNiCo. Nature 406, 602–605 (2000).
Corbae, P. et al. Statement of spin-momentum locked floor states in amorphous Bi2Se3. Nat. Mater. 22, 200–206 (2023).
Zhou, Y. et al. Bilayer Wigner crystals in a transition metallic dichalcogenide heterostructure. Nature 595, 48–52 (2021).
Pudalov, V. M., D’lorio, M., Kravchenko, S. V. & Campbell, J. W. Zero-magnetic-field collective insulator part in a dilute 2D electron system. Phys. Rev. Lett. 70, 1866–1869 (1993).
Hanein, Y. et al. Statement of the metal-insulator transition in two-dimensional n-type GaAs. Phys. Rev. B 58, R13338–R13340 (1993).
Solovyev, V. V. & Kukushkin, I. V. Renormalized Landau quasiparticle dispersion revealed by photoluminescence spectra from a two-dimensional Fermi liquid on the MgZnO/ZnO heterointerface. Phys. Rev. B 96, 115131 (2017).
Chui, S. T. & Tanatar, B. Impurity impact on the two-dimensional-electron fluid-solid transition in zero subject. Phys. Rev. Lett. 74, 458–461 (1995).
Fogler, M. M., Koulakov, A. A. & Shklovskii, B. I. Floor state of a two-dimensional electron liquid in a weak magnetic subject. Phys. Rev. B 54, 1853–1871 (1996).
Reichhardt, C. J. O., Reichhardt, C. & Bishop, A. R. Structural transitions, melting, and intermediate phases for stripe- and clump-forming programs. Phys. Rev. E 82, 041502 (2010).
Pu, S., Balram, A. C., Taylor, J., Fradkin, E. & Papić, Z. Microscopic mannequin for fractional quantum Corridor nematics. Phys. Rev. Lett. 132, 236503 (2024).
Chang, Ok. S., Sher, A., Petzinger, Ok. G. & Weisz, G. Density of states of liquid Cu. Phys. Rev. B 12, 5506–5513 (1975).
Anderson, P. W. & McMillan, W. L. in A number of-Scattering Idea and Resonances in Transition Metals (ed. Marshall, W.) 50–86 (Tutorial, 1967).
Schwartz, L. & Ehrenreich, H. Single-site approximation within the digital idea of liquid metals. Ann. Phys. 64, 100–148 (1971).
Morgan, G. J. Electron transport in liquid metals II. A mannequin for the wave features in liquid transition metals. J. Phys. C Stable State Phys. 2, 1454–1463 (1969).
Park, Ok. & Jain, J. Ok. Two-roton sure state within the fractional quantum Corridor impact. Phys. Rev. Lett. 84, 5576–5579 (2000).
Jung, S. W. et al. Black phosphorus as a bipolar pseudospin semiconductor. Nat. Mater. 19, 277–281 (2020).
Golden, Ok. I., Kalman, G. J., Hartmann, P. & Donkó, Z. Dynamics of two-dimensional dipole programs. Phys. Rev. E 82, 036402 (2010).
Kutlu, E., Narin, P., Lisesivdin, S. B. & Ozbay, E. Digital and optical properties of black phosphorus doped with Au, Sn and I atoms. Philos. Magazine. 98, 155–164 (2018).
Fei, R. & Yang, L. Pressure-engineering the anisotropic electrical conductance of few layer black phosphorus. Nano Lett. 14, 2884–2889 (2014).
Chui, S. T. & Tanatar, B. Section diagram of the two-dimensional quantum electron freezing with exterior impurities. Phys. Rev. B 55, 9330–9932 (1997).
Tian, Z. et al. Isotropic cost screening of anisotropic black phosphorus revealed by potassium adatoms. Phys. Rev. B 100, 085440 (2019).
Shirley, E. L., Terminello, L. J., Santoni, A. & Himpsel, F. J. Brillouin-zone-selection results in graphite photoelectron angular distributions. Phys. Rev. B 51, 13614–13622 (1995).
Moser, S. An experimentalist’s information to the matrix aspect in angle resolved photoemission. J. Electron Spectros. Relat. Phenomena 214, 29–52 (2017).