Buck, L. & Axel, R. A novel multigene household might encode odorant receptors: a molecular foundation for odor recognition. Cell 65, 175–187 (1991).
Glusman, G., Yanai, I., Rubin, I. & Lancet, D. The entire human olfactory subgenome. Genome Res. 11, 685–702 (2001).
Ikegami, Okay. et al. Structural instability and divergence from conserved residues underlie intracellular retention of mammalian odorant receptors. Proc. Natl Acad. Sci. USA 117, 2957–2967 (2020).
Malnic, B., Godfrey, P. A. & Buck, L. B. The human olfactory receptor gene household. Proc. Natl Acad Sci. USA 101, 2584–2589 (2004).
Bjarnadóttir, T. Okay. et al. Complete repertoire and phylogenetic evaluation of the G protein-coupled receptors in human and mouse. Genomics 88, 263–273 (2006).
Liberles, S. D. & Buck, L. B. A second class of chemosensory receptors within the olfactory epithelium. Nature 442, 645–650 (2006).
Olender, T., Jones, T. E. M., Bruford, E. & Lancet, D. A unified nomenclature for vertebrate olfactory receptors. BMC Evol. Biol. 20, 42 (2020).
Malnic, B., Hirono, J., Sato, T. & Buck, L. B. Combinatorial receptor codes for odors. Cell 96, 713–723 (1999).
Saito, H., Chi, Q., Zhuang, H., Matsunami, H. & Mainland, J. D. Odor coding by a mammalian receptor repertoire. Sci. Sign. 2, ra9 (2009).
Cichy, A., Shah, A., Dewan, A., Kaye, S. & Bozza, T. Genetic depletion of sophistication I odorant receptors impacts notion of carboxylic acids. Curr. Biol. 29, 2687–2697.e4 (2019).
Dewan, A., Pacifico, R., Zhan, R., Rinberg, D. & Bozza, T. Non-redundant coding of aversive odours in the principle olfactory pathway. Nature 497, 486–489 (2013).
Niimura, Y. On the origin and evolution of vertebrate olfactory receptor genes: comparative genome evaluation amongst 23 chordate species. Genome Biol. Evol. 1, 34–44 (2009).
Bear, D. M., Lassance, J.-M., Hoekstra, H. E. & Datta, S. R. The evolving neural and genetic structure of vertebrate olfaction. Curr. Biol. 26, R1039–R1049 (2016).
Freitag, J., Krieger, J., Strotmann, J. & Breer, H. Two courses of olfactory receptors in Xenopus laevis. Neuron 15, 1383–1392 (1995).
Billesbølle, C. B. et al. Structural foundation of odorant recognition by a human odorant receptor. Nature 615, 742–749 (2023).
Guo, L. et al. Structural foundation of amine odorant notion by a mammal olfactory receptor. Nature 618, 193–200 (2023).
Shang, P. et al. Structural and signaling mechanisms of TAAR1 enabled preferential agonist design. Cell 186, 5347–5362.e24 (2023).
Xu, Z. et al. Ligand recognition and G-protein coupling of hint amine receptor TAAR1. Nature 624, 672–681 (2023).
Liu, H. et al. Recognition of methamphetamine and different amines by hint amine receptor TAAR1. Nature 624, 663–671 (2023).
Gusach, A. et al. Molecular recognition of an odorant by the murine hint amine-associated receptor TAAR7f. Nat. Commun. 15, 7555 (2024).
Lu, M., Echeverri, F. & Moyer, B. D. Endoplasmic reticulum retention, degradation, and aggregation of olfactory G-protein coupled receptors. Site visitors 4, 416–433 (2003).
Saito, H., Kubota, M., Roberts, R. W., Chi, Q. & Matsunami, H. RTP members of the family induce useful expression of mammalian odorant receptors. Cell 119, 679–691 (2004).
Zhuang, H. & Matsunami, H. Evaluating cell-surface expression and measuring activation of mammalian odorant receptors in heterologous cells. Nat. Protoc. 3, 1402–1413 (2008).
Noe, F. et al. IL-6-HaloTag® permits live-cell plasma membrane staining, movement cytometry, useful expression, and de-orphaning of recombinant odorant receptors. J. Biol. Strategies 4, e81 (2017).
Sternke, M., Tripp, Okay. W. & Barrick, D. Consensus sequence design as a basic technique to create hyperstable, biologically lively proteins. Proc. Natl Acad. Sci. USA 116, 11275–11284 (2019).
Desjarlais, J. R. & Berg, J. M. Use of a zinc-finger consensus sequence framework and specificity guidelines to design particular DNA binding proteins. Proc. Natl Acad. Sci. USA 90, 2256–2260 (1993).
Porebski, B. T. & Buckle, A. M. Consensus protein design. Protein Eng. Des. Sel. 29, 245–251 (2016).
Steipe, B., Schiller, B., Plückthun, A. & Steinbacher, S. Sequence statistics reliably predict stabilizing mutations in a protein area. J. Mol. Biol. 240, 188–192 (1994).
Lehmann, M. et al. From DNA sequence to improved performance: utilizing protein sequence comparisons to quickly design a thermostable consensus phytase. Protein Eng. 13, 49–57 (2000).
Choi, C. et al. Understanding the molecular mechanisms of odorant binding and activation of the human OR52 household. Nat. Commun. 14, 8105 (2023).
Nehmé, R. et al. Mini-G proteins: novel instruments for learning GPCRs of their lively conformation. PLoS ONE 12, e0175642 (2017).
Ballesteros, J. A. & Weinstein, H. in Strategies in Neurosciences Vol. 25 (ed. Sealfon, S. C.) 366–428 (Educational Press, 1995).
de March, C. A., Kim, S.-Okay., Antonczak, S., Goddard, W. A. third & Golebiowski, J. G protein-coupled odorant receptors: from sequence to construction. Protein Sci. 24, 1543–1548 (2015).
Isberg, V. et al. Generic GPCR residue numbers—aligning topology maps whereas minding the gaps. Tendencies Pharmacol. Sci. 36, 22–31 (2015).
de March, C. A. et al. Conserved residues management activation of mammalian G protein-coupled odorant receptors. J. Am. Chem. Soc. 137, 8611–8616 (2015).
Pluznick, J. L. et al. Olfactory receptor responding to intestine microbiota-derived alerts performs a task in renin secretion and blood stress regulation. Proc. Natl Acad. Sci. USA 110, 4410–4415 (2013).
Shayya, H. J. et al. ER stress transforms random olfactory receptor selection into axon concentrating on precision. Cell 185, 3896–3912.e22 (2022).
Mainland, J. D., Li, Y. R., Zhou, T., Liu, W. L. L. & Matsunami, H. Human olfactory receptor responses to odorants. Sci. Information 2, 150002 (2015).
Kajiya, Okay. et al. Molecular bases of odor discrimination: reconstitution of olfactory receptors that acknowledge overlapping units of odorants. J. Neurosci. 21, 6018–6025 (2001).
Grosmaitre, X. et al. SR1, a mouse odorant receptor with an unusually broad response profile. J. Neurosci. 29, 14545–14552 (2009).
Schmiedeberg, Okay. et al. Structural determinants of odorant recognition by the human olfactory receptors OR1A1 and OR1A2. J. Struct. Biol. 159, 400–412 (2007).
Geithe, C., Noe, F., Kreissl, J. & Krautwurst, D. The broadly tuned odorant receptor OR1A1 is extremely selective for 3-methyl-2,4-nonanedione, a key meals odorant in aged wines, tea, and different meals. Chem. Senses 42, 181–193 (2017).
Ma, N., Lee, S. & Vaidehi, N. Activation microswitches in adenosine receptor A2A perform as rheostats within the cell membrane. Biochemistry 59, 4059–4071 (2020).
Dror, R. O. et al. Activation mechanism of the β2-adrenergic receptor. Proc. Natl Acad. Sci. USA 108, 18684–18689 (2011).
Lee, S., Nivedha, A. Okay., Tate, C. G. & Vaidehi, N. Dynamic position of the G protein in stabilizing the lively state of the adenosine A2A receptor. Construction 27, 703–712.e3 (2019).
Li, Q. et al. Non-classical amine recognition developed in a big clade of olfactory receptors. eLife 4, e10441 (2015).
Del Mármol, J., Yedlin, M. A. & Ruta, V. The structural foundation of odorant recognition in insect olfactory receptors. Nature 597, 126–131 (2021).
Butterwick, J. A. et al. Cryo-EM construction of the insect olfactory receptor Orco. Nature 560, 447–452 (2018).
Jumper, J. et al. Extremely correct protein construction prediction with AlphaFold. Nature 596, 583–589 (2021).
Bender, B. J., Marlow, B. & Meiler, J. Enhancing homology modeling from low-sequence identification templates in Rosetta: a case research in GPCRs. PLoS Comput. Biol. 16, e1007597 (2020).
Rutherford, S. L. & Lindquist, S. Hsp90 as a capacitor for morphological evolution. Nature 396, 336–342 (1998).
Wyganowski, Okay. T., Kaltenbach, M. & Tokuriki, N. GroEL/ES buffering and compensatory mutations promote protein evolution by stabilizing folding intermediates. J. Mol. Biol. 425, 3403–3414 (2013).
Agozzino, L. & Dill, Okay. A. Protein evolution velocity is determined by its stability and abundance and on chaperone concentrations. Proc. Natl Acad. Sci. USA 115, 9092–9097 (2018).
Faust, B. et al. Autoantibody mimicry of hormone motion on the thyrotropin receptor. Nature 609, 846–853 (2022).
Mastronarde, D. N. SerialEM: a program for automated tilt sequence acquisition on Tecnai microscopes utilizing prediction of specimen place. Microsc. Microanal. 9, 1182–1183 (2003).
Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced movement for improved cryo-electron microscopy. Nat. Strategies 14, 331–332 (2017).
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for fast unsupervised cryo-EM construction dedication. Nat. Strategies 14, 290–296 (2017).
Asarnow, D., Palovcak, E. & Cheng, Y. asarnow/pyem: UCSF Pyem v0.5. Zenodo https://doi.org/10.5281/zenodo.3576630 (2019).
Pettersen, E. F. et al. UCSF ChimeraX: construction visualization for researchers, educators, and builders. Protein Sci. 30, 70–82 (2021).
Scheres, S. H. W. RELION: implementation of a Bayesian strategy to cryo-EM construction dedication. J. Struct. Biol. 180, 519–530 (2012).
Bushdid, C., de March, C. A., Matsunami, H. & Golebiowski, J. Numerical fashions and in vitro assays to check odorant receptors. Strategies Mol. Biol. 1820, 77–93 (2018).
Zhang, Y., Pan, Y., Matsunami, H. & Zhuang, H. Stay-cell measurement of odorant receptor activation utilizing a real-time cAMP assay. J. Vis. Exp. 128, 55831 (2017).
Berendsen, H. J. C., van der Spoel, D. & van Drunen, R. GROMACS: a message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 91, 43–56 (1995).
Huang, J. et al. CHARMM36m: an improved power area for folded and intrinsically disordered proteins. Nat. Strategies 14, 71–73 (2017).
Vanommeslaeghe, Okay. et al. CHARMM basic power area: a power area for drug-like molecules appropriate with the CHARMM all-atom additive organic power fields. J. Comput. Chem. 31, 671–690 (2010).
Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM-GUI: a web-based graphical person interface for CHARMM. J. Comput. Chem. 29, 1859–1865 (2008).
Jo, S., Lim, J. B., Klauda, J. B. & Im, W. CHARMM-GUI Membrane Builder for blended bilayers and its utility to yeast membranes. Biophys. J. 97, 50–58 (2009).
Lomize, M. A., Pogozheva, I. D., Joo, H., Mosberg, H. I. & Lomize, A. L. OPM database and PPM internet server: assets for positioning of proteins in membranes. Nucleic Acids Res. 40, D370–D376 (2012).
Parrinello, M. & Rahman, A. Polymorphic transitions in single crystals: a brand new molecular dynamics methodology. J. Appl. Phys. 52, 7182–7190 (1981).
Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: an N⋅log(N) methodology for Ewald sums in giant techniques. J. Chem. Phys. 98, 10089–10092 (1993).
Pagès, H., Aboyoun, P., Gentleman, R. & DebRoy, S. Biostrings: Environment friendly manipulation of organic strings. R package deal model 2.72.1 https://bioconductor.org/packages/Biostrings (2022).
Charif, D. & Lobry, J. R. in Structural Approaches to Sequence Evolution: Molecules, Networks, Populations (eds Bastolla, U. et al.) 207–232 (Springer Berlin Heidelberg, 2007).
Paradis, E. & Schliep, Okay. ape 5.0: an surroundings for contemporary phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).
Xu, S. et al. Ggtree: a serialized information object for visualization of a phylogenetic tree and annotation information. iMeta 1, e56 (2022).
Crooks, G. E., Hon, G., Chandonia, J.-M. & Brenner, S. E. WebLogo: a sequence emblem generator. Genome Res. 14, 1188–1190 (2004).
Dang, S. et al. Cryo-EM constructions of the TMEM16A calcium-activated chloride channel. Nature 552, 426–429 (2017).