Patriat, P. & Achache, J. India–Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates. Nature 311, 615–621 (1984).
Cande, S. C. & Patriat, P. The anticorrelated velocities of Africa and India within the Late Cretaceous and early Cenozoic. Geophys. J. Int. 200, 227–243 (2015).
Copley, A., Avouac, J. P. & Royer, J. Y. India‐Asia collision and the Cenozoic slowdown of the Indian plate: implications for the forces driving plate motions. J. Geophys. Res. Stable Earth 115, B03410 (2010).
Cande, S. C. & Stegman, D. R. Indian and African plate motions pushed by the push power of the Réunion plume head. Nature 475, 47–52 (2011).
Jagoutz, O., Royden, L., Holt, A. F. & Becker, T. W. Anomalously quick convergence of India and Eurasia attributable to double subduction. Nat. Geosci. 8, 475–478 (2015).
Van Hinsbergen, D. J. J., Steinberger, B., Doubrovine, P. V. & Gassmöller, R. Acceleration and deceleration of India-Asia convergence because the Cretaceous: roles of mantle plumes and continental collision. J. Geophys. Res. Stable Earth 116, B06101 (2011).
Pusok, A. E. & Stegman, D. R. The convergence historical past of India-Eurasia data a number of subduction dynamics processes. Sci. Adv. 6, eaaz8681 (2020).
Wan, B. et al. Cyclical one-way continental rupture-drift within the Tethyan evolution: subduction-driven plate tectonics. Sci. China-Earth Sci. 62, 2005–2016 (2019).
Forsyth, D. & Uyeda, S. On the relative significance of the driving forces of plate movement. Geophys. J. Int. 43, 163–200 (1975).
Holt, A. F., Royden, L. H. & Becker, T. W. The dynamics of double slab subduction. Geophys. J. Int. 209, 250–265 (2017).
Pusok, A. E. & Stegman, D. R. Formation and stability of same-dip double subduction techniques. J. Geophys. Res. Stable Earth 124, 7387–7412 (2019).
Cande, S. C., Patriat, P. & Dyment, J. Movement between the Indian, Antarctic and African plates within the early Cenozoic: Indian Ocean Plate motions. Geophys. J. Int. 183, 127–149 (2010).
Ingalls, M., Rowley, D. B., Currie, B. & Colman, A. S. Massive-scale subduction of continental crust implied by India–Asia mass-balance calculation. Nat. Geosci. 9, 848–853 (2016).
Van Hinsbergen, D. J. J. et al. Higher India Basin speculation and a two-stage Cenozoic collision between India and Asia. Proc. Natl Acad. Sci. USA 109, 7659–7664 (2012).
DeCelles, P. G., Kapp, P., Gehrels, G. E. & Ding, L. Paleocene-Eocene foreland basin evolution within the Himalaya of southern Tibet and Nepal: implications for the age of preliminary India-Asia collision. Tectonics 33, 824–849 (2014).
Yuan, J. et al. Speedy drift of the Tethyan Himalaya terrane earlier than two-stage India-Asia collision. Nat. Sci. Rev. 8, nwaa173 (2020).
Behr, W. M. & Becker, T. W. Sediment management on subduction plate speeds. Earth Planet. Sci. Lett. 502, 166–173 (2018).
Hu, J., Liu, L. & Gurnis, M. Southward increasing plate coupling as a result of variation in sediment subduction as a reason for Andean progress. Nat. Commun. 12, 7271 (2021).
Sobolev, S. V. & Brown, M. Floor erosion occasions managed the evolution of plate tectonics on Earth. Nature 570, 52–57 (2019).
Sobolev, S. V. & Babeyko, A. Y. What drives orogeny within the Andes? Geology 33, 617–620 (2005).
Tobin, H. J. & Saffer, D. M. Elevated fluid strain and excessive mechanical weak spot of a plate boundary thrust, Nankai Trough subduction zone. Geology 37, 679–682 (2009).
Kopf, A. & Brown, Ok. M. Friction experiments on saturated sediments and their implications for the stress state of the Nankai and Barbados subduction thrusts. Mar. Geol. 202, 193–210 (2003).
Bangs, N. L. B. et al. Broad, weak areas of the Nankai Megathrust and implications for shallow coseismic slip. Earth Planet. Sci. Lett. 284, 44–49 (2009).
Brizzi, S. et al. The position of sediment accretion and buoyancy on subduction dynamics and geometry. Geophys. Res. Lett. 48, e2021GL096266 (2021).
Zhu, D. C. et al. Early cretaceous subduction-related adakite-like rocks of the Gangdese Belt, southern Tibet: merchandise of slab melting and subsequent soften–peridotite interplay? J. Asian Earth Sci. 34, 298–309 (2009).
Mo, X. X. et al. Mantle contributions to crustal thickening throughout continental collision: proof from Cenozoic igneous rocks in southern Tibet. Lithos 96, 225–242 (2007).
Zhu, D. C., Wang, Q., Chung, S. L., Cawood, P. A. & Zhao, Z. D. Gangdese magmatism in southern Tibet and India–Asia convergence since 120 Ma. Geol. Soc. Spec. Publ. 483, 583–604 (2019).
Pearce, J. A. & Peate, D. W. Tectonic implications of the composition of volcanic ARC magmas. Annu. Rev. Earth Planet. Sci. 23, 251–285 (1995).
Schmidt, M. W. & Jagoutz, O. The worldwide systematics of primitive arc melts. Geochem. Geophys. Geosyst. 18, 2817–2854 (2017).
Müntener, O. & Ulmer, P. Arc crust formation and differentiation constrained by experimental petrology. Am. J. Sci. 318, 64–89 (2018).
Chen, L., Zheng, Y. F., Zhao, Z. F., An, W. & Hu, X. M. Continental crust recycling in historical oceanic subduction zone: geochemical insights from arc basaltic to andesitic rocks and paleo-trench sediments in southern Tibet. Lithos 414–415, 106619 (2022).
Zhao, L., Guo, F., Fan, W. M. & Huang, M. Roles of subducted pelagic and terrigenous sediments in Early Jurassic mafic magmatism in NE China: constraints on the structure of paleo-Pacific subduction zone. J. Geophys. Res. Stable Earth 124, 2525–2550 (2019).
Guo, F. et al. Magmatic responses to Cretaceous subduction and tearing of the paleo-Pacific Plate in SE China: an outline. Earth Sci. Rev. 212, 103448 (2021).
Patchett, P. J., White, W. M., Feldmann, H., Kielinczuk, S. & Hofmann, A. W. Hafnium/uncommon earth factor fractionation within the sedimentary system and crustal recycling into the Earth’s mantle. Earth Planet. Sci. Lett. 69, 365–378 (1984).
Hou, Z. et al. Lithospheric structure of the Lhasa Terrane and its management on ore deposits within the Himalayan-Tibetan orogen. Econ. Geol. 110, 1541–1575 (2015).
Wen, D. R. et al. Late Cretaceous Gangdese intrusions of adakitic geochemical traits, SE Tibet: petrogenesis and tectonic implications. Lithos 105, 1–11 (2008).
Huang, T. Y. et al. Subduction erosion revealed by Late Mesozoic magmatism within the Gangdese arc, South Tibet. Geophys. Res. Lett. 49, e2021GL097360 (2022).
Ding, L. et al. Timing and mechanisms of Tibetan Plateau uplift. Nat. Rev. Earth Environ. 3, 652–667 (2022).
van Dinther, Y. et al. The seismic cycle at subduction thrusts: insights from seismo-thermo-mechanical fashions. J. Geophys. Res. Stable Earth 118, 6183–6202 (2013).
Dal Zilio, L., Kissling, E., Gerya, T. & van Dinther, Y. Slab rollback orogeny mannequin: a take a look at of idea. Geophys. Res. Lett. 47, e2020GL089917 (2020).
Gerya, T. V. & Yuen, D. A. Sturdy traits technique for modelling multiphase visco-elasto-plastic thermo-mechanical issues. Phys. Earth Planet. Inter. 163, 83–105 (2007).
Gerya, T. & Stöckhert, B. Two-dimensional numerical modeling of tectonic and metamorphic histories at energetic continental margins. Int. J. Earth Sci. (Geol Rundsch) 95, 250–274 (2006).
Heezen, B. C., Ericson, D. B. & Ewing, M. Additional proof for a turbidity present following the 1929 Grand Banks earthquake. Deep Sea Res. (1953) 1, 193–202 (1954).
Straume, E. O. et al. GlobSed: up to date complete sediment thickness on this planet’s oceans. Geochem. Geophys. Geosyst. 20, 1756–1772 (2019).
Plank, T. & Langmuir, C. H. The chemical composition of subducting sediment and its penalties for the crust and mantle. Chen. Geol. 145, 325–394 (1998).
Pusok, A. E., Stegman, D. R. & Kerr, M. The impact of low-viscosity sediments on the dynamics and accretionary model of subduction margins. Stable Earth 13, 1455–1473 (2022).
Sibson, R. H. Stress switching in subduction forearcs: implications for overpressure containment and energy biking on megathrusts. Tectonophysics 600, 142–152 (2013).
Faulkner, D. R. et al. A evaluation of latest developments in regards to the construction, mechanics and fluid circulate properties of fault zones. J. Struct. Geol. 32, 1557–1575 (2010).
Tang, M., Ji, W. Q., Chu, X., Wu, A. & Chen, C. Reconstructing crustal thickness evolution from europium anomalies in detrital zircons. Geology 49, 76–80 (2020).
Hu, F. et al. Quantitatively monitoring the elevation of the Tibetan Plateau because the Cretaceous: insights from complete‐rock Sr/Y and La/Yb ratios. Geophys. Res. Lett. 47, e2020GL089202 (2020).
Guo, P. & Yang, T. Quantifying continental crust thickness utilizing the machine studying technique. J. Geophys. Res. Stable Earth 128, e2022JB025970 (2023).
Zhao, Z. D. et al. Distribution and its significance of dikes in southern Tibetan Plateau. Acta Petrol. Sin. 37, 3399–3412 (2021).
van Hinsbergen, D. J. J. et al. Restoration of Cenozoic deformation in Asia and the scale of Higher India. Tectonics 30, TC5003 (2011).
Hu, X. M., Garzanti, E., Moore, T. & Raffi, I. Direct stratigraphic relationship of India-Asia collision onset on the Selandian (center Paleocene, 59 ± 1 Ma). Geology 43, 859–862 (2015).
Orme, D. A., Carrapa, B. & Kapp, P. Sedimentology, provenance and geochronology of the higher Cretaceous–decrease Eocene western Xigaze forearc basin, southern Tibet. Basin Res. 27, 387–411 (2015).
An, W., Hu, X. M., Garzanti, E., Wang, J. G. & Liu, Q. New exact relationship of the India‐Asia collision within the Tibetan Himalaya at 61 Ma. Geophys. Res. Lett. 48, e2020GL090641 (2021).
Zhu, D. C. et al. Interaction between oceanic subduction and continental collision in constructing continental crust. Nat. Commun. 13, 7141 (2022).
Kapp, P. & DeCelles, P. G. Mesozoic-Cenozoic geological evolution of the Himalayan-Tibetan orogen and dealing tectonic hypotheses. Am. J. Sci. 319, 159–254 (2019).
Ma, L. et al. Early Late Cretaceous (ca. 93 Ma) norites and hornblendites within the Milin space, jap Gangdese: lithosphere–asthenosphere interplay throughout slab roll-back and an perception into early Late Cretaceous (ca. 100–80 Ma) magmatic “flare-up” in southern Lhasa (Tibet). Lithos 172–173, 17–30 (2013).
Ma, L. et al. Late Cretaceous crustal progress within the Gangdese space, southern Tibet: petrological and Sr–Nd–Hf–O isotopic proof from Zhengga diorite–gabbro. Chem. Geol. 349–350, 54–70 (2013).
Meng, Y. Ok. et al. Late Mesozoic diorites of the center Gangdese magmatic belt of southern Tibet: new insights from SHRIMP U-Pb relationship and Sr-Nd-Hf-O isotopes. Lithos 404–405, 106420 (2021).
Guan, Q. et al. Zircon U-Pb chronology, geochemistry of the Late Cretaceous mafic magmatism within the southern Lhasa Terrane and its implications. Acta Petrol. Sin. 27, 2083–2094 (2011).
Tang, Y. et al. Geochemistry and petrogenesis of Late Cretaceous Namling gabbro and dykes in Gangdese batholith, Tibet. Acta Petrol. Sin. 35, 387–404 (2019).
Qi, Y. et al. Cenozoic mantle composition evolution of southern Tibet indicated by Paleocene (~64 Ma) pseudoleucite phonolitic rocks in central Lhasa terrane. Lithos 302–303, 178–188 (2018).
Huang, F. et al. Fluid flux within the lithosphere beneath southern Tibet throughout Neo-Tethyan slab breakoff: proof from an appinite–granite suite. Lithos 344–345, 324–338 (2019).
Wang, Y. F. et al. Alongside-arc variations in isotope and hint factor compositions of Paleogene gabbroic rocks within the Gangdese batholith, southern Tibet. Lithos 324–325, 877–892 (2019).
Huang, F., Rooney, T. O., Xu, J. F. & Zeng, Y. C. Magmatic document of steady Neo-Tethyan subduction after preliminary India-Asia collision within the central a part of southern Tibet. GSA Bull. 133, 1600–1612 (2020).
Lei, M., Chen, J. L., Huang, F. & Liu, Y. X. Mantle wedge enrichment beneath southern Tibet in the course of the late stage (100–45 Ma) of oceanic subduction: geochemical constraints from mantle-derived intrusions. Lithos 406–407, 106505 (2021).
Yan, H. Y. et al. Arc andesitic rocks derived from partial melts of mélange diapir in subduction zones: proof from whole-rock geochemistry and Sr-Nd-Mo isotopes of the Paleogene Linzizong volcanic succession in southern Tibet. J. Geophys. Res. Stable Earth 124, 456–475 (2019).
Mo, X. X. et al. Contribution of syncollisional felsic magmatism to continental crust progress: a case research of the Paleogene Linzizong volcanic succession in southern Tibet. Chem. Geol. 250, 49–67 (2008).
Zhou, S. et al. 40Ar-39Ar geochronology of Cenozoic Linzizong volcanic rocks from Linzhou Basin, Tibet, China, and their geological implications. Chin. Sci. Bull. 49, 1970–1979 (2004).
Dong, G. C. Linzizong Volcanic Rocks and Implications for Probing India Eurasia Collision Course of in Linzhou Volcanic Basin, Tibet. PhD thesis, China Univ. Geosciences, Beijing (2002).
Workman, R. Ok. & Hart, S. R. Main and hint factor composition of the depleted MORB mantle (DMM). Earth Planet. Sci. Lett. 231, 53–72 (2005).
Richards, A. et al. Himalayan structure constrained by isotopic tracers from clastic sediments. Earth Planet. Sci. Lett. 236, 773–796 (2005).
Aizawa, Y., Tatsumi, Y. & Yamada, H. Component transport by dehydration of subducted sediments: implication for arc and ocean island magmatism. Island Arc 8, 38–46 (1999).
Tatsumi, Y. & Hanyu, T. Geochemical modeling of dehydration and partial melting of subducting lithosphere: towards a complete understanding of excessive‐Mg andesite formation within the Setouchi volcanic belt, SW Japan. Geochem. Geophys. Geosyst. 4, 1081 (2003).
Hermann, J. & Spandler, C. J. Sediment melts at sub-arc depths: an experimental research. J. Petrology 49, 717–740 (2008).
Wilson, M. Igneous Petrogenesis. (Springer, 1989).
Faure, G. & Mensing, T. M. Isotopes: Ideas and Functions (Wiley, 2005).
Crameri, F. et al. A comparability of numerical floor topography calculations in geodynamic modelling: an analysis of the ‘sticky air’ technique: modelling topography in geodynamics. Geophys. J. Int. 189, 38–54 (2012).
Turcotte, D. L. & Schubert, G. Geodynamics (Cambridge Univ. Press, 2014).
Ranalli, G. Rheology of the Earth (Springer-Verlag, 2011).
Cai, F. L. et al. Late Triassic paleogeographic reconstruction alongside the Neo–Tethyan Ocean margins, southern Tibet. Earth Planet. Sci. Lett. 435, 105–114 (2016).
Hennig, J., Corridor, R. & Armstrong, R. A. U-Pb zircon geochronology of rocks from west Central Sulawesi, Indonesia: extension-related metamorphism and magmatism in the course of the early phases of mountain constructing. Gondwana Res. 32, 41–63 (2016).
Wang, J. G. et al. Higher Triassic turbidites of the northern Tethyan Himalaya (Langjiexue Group): the terminal of a sediment-routing system sourced within the Gondwanide Orogen. Gondwana Res. 34, 84–98 (2016).
Mitchell, N. C. Modeling Cenozoic sedimentation within the central equatorial Pacific and implications for true polar wander. J. Geophys. Res. Stable Earth 103, 17749–17766 (1998).
Savoye, B., Babonneau, N., Dennielou, B. & Bez, M. Geological overview of the Angola–Congo margin, the Congo deep-sea fan and its submarine valleys. Deep Sea Res. PT II 56, 2169–2182 (2009).
Clift, P. & Vannucchi, P. Controls on tectonic accretion versus erosion in subduction zones: implications for the origin and recycling of the continental crust. Rev. Geophys. 42, 2003RG000127 (2004).
Hu, X. M., An, W., Garzanti, E. & Liu, Q. Recognition of trench basins in collisional orogens: insights from the Yarlung Zangbo suture zone in southern Tibet. Sci. China Earth Sci. 63, 2017–2028 (2020).
Noda, A. Forearc basins: sorts, geometries, and relationships to subduction zone dynamics. Geol. Soc. Am. Bull. 128, 879–895 (2016).
Straub, S. M., Gómez-Tuena, A. & Vannucchi, P. Subduction erosion and arc volcanism. Nat. Rev. Earth Environ. 1, 574–589 (2020).
Zhou, H. et al. Knowledge from: India-Eurasia convergence speed-up by passive-margin sediment subduction. Dryad https://doi.org/10.5061/dryad.8kprr4xwr (2024).
Irvine, T. N. & Baragar, W. R. A. A information to the chemical classification of the frequent volcanic rocks. Can. J. Earth Sci. 8, 523–548 (1971).
Peccerillo, A. & Taylor, S. R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu space, Northern Turkey. Contrib. Mineral. Petrol. 58, 63–81 (1976).
Hasterok, D. et al. New maps of world geological provinces and tectonic plates. Earth Sci. Rev. 231, 104069 (2022).
Den Hartog, S. A. M., Niemeijer, A. R. & Spiers, C. J. New constraints on megathrust slip stability beneath subduction zone P–T situations. Earth Planet. Sci. Lett. 353–354, 240–252 (2012).
Di Toro, G. et al. Fault lubrication throughout earthquakes. Nature 471, 494–498 (2011).
Tsutsumi, A. & Shimamoto, T. Excessive‐velocity frictional properties of gabbro. Geophy. Res. Lett. 24, 699–702 (1997).
Chester, F. M. & Higgs, N. G. Multimechanism friction constitutive mannequin for ultrafine quartz gouge at hypocentral situations. J. Geophys. Res. Stable Earth 97, 1859–1870 (1992).
Del Gaudio, P. et al. Frictional melting of peridotite and seismic slip. J. Geophys. Res. Stable Earth 114, B06306 (2009).
Schultz, R. A. Limits on energy and deformation properties of jointed basaltic rock lots. Rock Mech. Rock Eng. 28, 1–15 (1995).