Wong, H. S. P. et al. Section change reminiscence. Proc. IEEE 98, 2201–2227 (2010).
Nam, S. W. et al. Electrical wind force-driven and dislocation-templated amorphization in phase-change nanowires. Science 336, 1561–1566 (2012).
Nukala, P., Lin, C. C., Composto, R. & Agarwal, R. Ultralow-power switching by way of defect engineering in germanium telluride phase-change reminiscence gadgets. Nat. Commun. 7, 10482 (2016).
Lee, S. H., Jung, Y. & Agarwal, R. Extremely scalable non-volatile and ultra-low-power phase-change nanowire reminiscence. Nat. Nanotechnol. 2, 626–630 (2007).
Jung, Y., Nam, S. W. & Agarwal, R. Excessive-resolution transmission electron microscopy examine of electrically-driven reversible section change in Ge2Sb2Te5 nanowires. Nano Lett. 11, 1364–1368 (2011).
Fecht, H. J. Defect-induced melting and solid-state amorphization. Nature 356, 133–135 (1992).
Zapperi, S., Cizeau, P., Durin, G. & Stanley, H. E. Dynamics of a ferromagnetic area wall: avalanches, depinning transition, and the Barkhausen impact. Phys. Rev. B 58, 6353–6366 (1998).
Casals, B., Nataf, G. F. & Salje, E. Ok. H. Avalanche criticality throughout ferroelectric/ ferroelastic switching. Nat. Commun. 12, 345 (2021).
Biroli, G. Disordered solids: in quest of the proper glass. Nat. Phys. 10, 555–556 (2014).
Berthier, L. & Biroli, G. Theoretical perspective on the glass transition and amorphous supplies. Rev. Mod. Phys. 83, 587–645 (2011).
Russo, J., Romano, F. & Tanaka, H. Glass forming means in techniques with competing orderings. Phys. Rev. 8, 021040 (2018).
Klement, W., Willens, R. H. & Duwez, P. Non-crystalline construction in solidified gold–silicon alloys. Nature 187, 869–870 (1960).
Zhang, L. et al. Amorphous martensite in β-Ti alloys. Nat. Commun. 9, 506 (2018).
Rehn, L. E., Okamoto, P. R., Pearson, J., Bhadra, R. & Grimsditch, M. Strong-state amorphization of Zr3Al: proof of an elastic instability and first-order section transformation. Phys. Rev. Lett. 59, 2987–2990 (1987).
Bridges, F. et al. Native vibrations and unfavourable thermal enlargement in ZrW2O8. Science 280, 886–890 (1998).
He, Y. et al. In situ commentary of shear-driven amorphization in silicon crystals. Nat. Nanotechnol. 11, 866–871 (2016).
Shportko, Ok. et al. Resonant bonding in crystalline phase-change supplies. Nat. Mater. 7, 653–658 (2008).
Nukala, P. et al. Inverting polar domains by way of electrical pulsing in metallic germanium telluride. Nat. Commun. 8, 15033 (2017).
Edwards, A. H. et al. Digital construction of intrinsic defects in crystalline germanium telluride. Phys. Rev. B 73, 045210 (2006).
Strains, M. E. & Glass, A. M. Rules and Purposes of Ferroelectrics and Associated Supplies (Oxford Univ. Press, 2001).
Ding, W. et al. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and different III2-VI3 van der Waals supplies. Nat. Commun. 8, 14956 (2017).
Xiao, J. et al. Intrinsic two-dimensional ferroelectricity with dipole locking. Phys. Rev. Lett. 120, 227601 (2018).
Xu, C. et al. Two-dimensional antiferroelectricity in nanostripe-ordered In2Se3. Phys. Rev. Lett. 125, 47601 (2020).
Xu, C. et al. Two-dimensional ferroelasticity in van der Waals β’-In2Se3. Nat. Commun. 12, 3665 (2021).
Zhang, Z. et al. Atomic visualization and switching of ferroelectric order in β-In2Se3 movies on the single layer restrict. Adv. Mater. 34, 2106951 (2022).
Wang, L. et al. In-plane ferrielectric order in van der Waals β′-In2Se3. ACS Nano 18, 809–818 (2024).
Peng, H., Schoen, D. T., Meister, S., Zhang, X. F. & Cui, Y. Synthesis and section transformation of In2Se3 and CuInSe2 nanowires. J. Am. Chem. Soc. 129, 34–35 (2007).
Liu, L. et al. Atomically resolving polymorphs and crystal buildings of In2Se3. Chem. Mater. 31, 10143–10149 (2019).
Van Landuyt, J., Hatwell, H. & Amelinckx, S. The area construction of β-In2S3 ‘single crystals’ because of the ordering of indium vacancies. Mater. Res. Bull. 3, 519–528 (1968).
Van Landuyt, J. & Amelinckx, S. Antiphase boundaries and twins related to ordering of indium vacancies in β-In2S3. Phys. Standing Solidi B Primary Strong State Phys. 31, 589–600 (1969).
Chen, P. J. & Montgomery, S. T. A macroscopic principle for the existence of the hysteresis and butterfly loops in ferroelectricity. Ferroelectrics 23, 199–207 (1980).
Modi, G., Stach, E. A. & Agarwal, R. Low-power switching by dysfunction and service localization in bismuth-doped germanium telluride section change reminiscence nanowires. ACS Nano 14, 2162–2171 (2020).
Modi, G. et al. Managed self-assembly of nanoscale superstructures in phase-change Ge–Sb–Te nanowires. Nano Lett. 24, 5799–5807 (2024).
Yan, Z. H., Klassen, T., Michaelsen, C., Oehring, M. & Bormann, R. Inverse melting within the Ti-Cr system. Phys. Rev. B 47, 8520–8527 (1993).
Li, W., Qian, X. & Li, J. Section transitions in 2D supplies. Nat. Rev. Mater. 6, 829–846 (2021).
Matzen, S. et al. Tremendous switching and management of in-plane ferroelectric nanodomains in strained skinny movies. Nat. Commun. 5, 4415 (2014).
Gao, P. et al. Revealing the position of defects in ferroelectric switching with atomic decision. Nat. Commun. 2, 591 (2011).
Fu, H. & Cohen, R. E. Polarization rotation mechanism for ultrahigh electromechanical response. Nature 403, 281–283 (2000).
Salje, E. Ok. H., Wang, X., Ding, X. & Scott, J. F. Ultrafast switching in avalanche-driven ferroelectrics by supersonic kink actions. Adv. Funct. Mater. 27, 1700367 (2017).
Sui, F. et al. Atomic-level polarization reversal in sliding ferroelectric semiconductors. Nat. Commun. 15, 3799 (2024).
Nord, M., Vullum, P. E., MacLaren, I., Tybell, T. & Holmestad, R. Atomap: a brand new software program device for the automated evaluation of atomic decision photographs utilizing two-dimensional Gaussian becoming. Adv. Struct. Chem. Imaging 3, 9 (2017).
Takamoto, S. et al. In the direction of common neural community potential for materials discovery relevant to arbitrary mixture of 45 parts. Nat. Commun. 131, 2991 (2022).
Takamoto, S., Okanohara, D., Li, Q. J. & Li, J. In the direction of common neural community interatomic potential. J. Mater. 9, 447–454 (2023).
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave technique. Phys. Rev. B 59, 1758 (1999).
Perdew, J. P., Burke, Ok. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865 (1996).
Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).
Kresse, G. & Furthmüller, J. Environment friendly iterative schemes for ab initio total-energy calculations utilizing a plane-wave foundation set. Phys. Rev. B 54, 11169 (1996).
Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing picture nudged elastic band technique for locating saddle factors and minimal power paths. J. Chem. Phys. 113, 9901–9904 (2000).