DeMille, D. Quantum computation with trapped polar molecules. Phys. Rev. Lett. 88, 067901 (2002).
Yelin, S. F., Kirby, Okay. & Côté, R. Schemes for sturdy quantum computation with polar molecules. Phys. Rev. A 74, 050301 (2006).
Zhu, J., Kais, S., Wei, Q., Herschbach, D. & Friedrich, B. Implementation of quantum logic gates utilizing polar molecules in pendular states. J. Chem. Phys. 138, 024104 (2013).
Ni, Okay.-Okay., Rosenband, T. & Grimes, D. D. Dipolar change quantum logic gate with polar molecules. Chem. Sci. 9, 6830–6838 (2018).
Hudson, E. R. & Campbell, W. C. Dipolar quantum logic for freely rotating trapped molecular ions. Phys. Rev. A 98, 040302 (2018).
Park, J. W., Yan, Z. Z., Loh, H., Will, S. A. & Zwierlein, M. W. Second-scale nuclear spin coherence time of ultracold 23Na40Okay molecules. Science 357, 372–375 (2017).
Gregory, P. D., Blackmore, J. A., Bromley, S. L., Hutson, J. M. & Cornish, S. L. Sturdy storage qubits in ultracold polar molecules. Nat. Phys. 17, 1149–1153 (2021).
Lin, J., He, J., Jin, M., Chen, G. & Wang, D. Seconds-scale coherence on nuclear spin transitions of ultracold polar molecules in 3d optical lattices. Phys. Rev. Lett. 128, 223201 (2022).
Burchesky, S. et al. Rotational coherence instances of polar molecules in optical tweezers. Phys. Rev. Lett. 127, 123202 (2021).
Christakis, L. et al. Probing site-resolved correlations in a spin system of ultracold molecules. Nature 614, 64–69 (2023).
Park, A. J. et al. Prolonged rotational coherence of polar molecules in an elliptically polarized lure. Phys. Rev. Lett. 131, 183401 (2023).
Holland, C. M., Lu, Y. & Cheuk, L. W. On-demand entanglement of molecules in a reconfigurable optical tweezer array. Science 382, 1143–1147 (2023).
Bao, Y. et al. Dipolar spin-exchange and entanglement between molecules in an optical tweezer array. Science 382, 1138–1143 (2023).
Lloyd, S. A probably realizable quantum pc. Science 261, 1569–1571 (1993).
Gershenfeld, N. A. & Chuang, I. L. Bulk spin-resonance quantum computation. Science 275, 350–356 (1997).
Jones, J. A. & Mosca, M. Implementation of a quantum algorithm on a nuclear magnetic resonance quantum pc. J. Chem. Phys. 109, 1648–1653 (1998).
Vandersypen, L. M. Okay. et al. Experimental realization of Shor’s quantum factoring algorithm utilizing nuclear magnetic resonance. Nature 414, 883–887 (2001).
Menicucci, N. C. & Caves, C. M. Native reasonable mannequin for the dynamics of bulk-ensemble NMR data processing. Phys. Rev. Lett. 88, 167901 (2002).
Monroe, C. & Kim, J. Scaling the ion lure quantum processor. Science 339, 1164–1169 (2013).
Bluvstein, D. et al. Logical quantum processor primarily based on reconfigurable atom arrays. Nature 626, 58–65 (2024).
Kjaergaard, M. et al. Superconducting qubits: present state of play. Annu. Rev. Condens. Matter Phys. 11, 369–395 (2020).
ACME Collaboration Improved restrict on the electrical dipole second of the electron. Nature 562, 355–360 (2018).
Roussy, T. S. et al. An improved certain on the electron’s electrical dipole second. Science 381, 46–50 (2023).
Micheli, A., Brennen, G. & Zoller, P. A toolbox for lattice-spin fashions with polar molecules. Nat. Phys. 2, 341–347 (2006).
Gorshkov, A. V. et al. Tunable superfluidity and quantum magnetism with ultracold polar molecules. Phys. Rev. Lett. 107, 115301 (2011).
Albert, V. V., Covey, J. P. & Preskill, J. Sturdy encoding of a qubit in a molecule. Phys. Rev. X 10, 031050 (2020).
Sawant, R. et al. Ultracold polar molecules as qudits. New J. Phys. 22, 013027 (2020).
Ni, Okay.-Okay. et al. A excessive phase-space-density gasoline of polar molecules. Science 322, 231–235 (2008).
Danzl, J. G. et al. Quantum gasoline of deeply certain floor state molecules. Science 321, 1062–1066 (2008).
Lang, F., Winkler, Okay., Strauss, C., Grimm, R. & Hecker Denschlag, J. Ultracold triplet molecules within the rovibrational floor state. Phys. Rev. Lett. 101, 133005 (2008).
Anderegg, L. et al. An optical tweezer array of ultracold molecules. Science 365, 1156–1158 (2019).
Cairncross, W. B. et al. Meeting of a rovibrational floor state molecule in an optical tweezer. Phys. Rev. Lett. 126, 123402 (2021).
Rosenberg, J. S., Christakis, L., Guardado-Sanchez, E., Yan, Z. Z. & Bakr, W. S. Statement of the Hanbury Brown–Twiss impact with ultracold molecules. Nat. Phys. 18, 1062–1066 (2022).
Ruttley, D. Okay. et al. Formation of ultracold molecules by merging optical tweezers. Phys. Rev. Lett. 130, 223401 (2023).
Zhang, J. T. et al. An optical tweezer array of ground-state polar molecules. Quantum Sci. Technol. 7, 035006 (2022).
Rosenband, T., Grimes, D. D. & Ni, Okay.-Okay. Elliptical polarization for molecular stark shift compensation in deep optical traps. Decide. Specific 26, 19821–19825 (2018).
Picard, L. R. B., Patenotte, G. E., Park, A. J., Gebretsadkan, S. F. & Ni, Okay.-Okay. Website-selective preparation and multistate readout of molecules in optical tweezers. PRX Quantum 5, 020344 (2024).
Aymar, M. & Dulieu, O. Calculation of correct everlasting dipole moments of the bottom 1,3Σ+ states of heteronuclear alkali dimers utilizing prolonged foundation units. J. Chem. Phys. 122, 204302 (2005).
Yan, B. et al. Statement of dipolar spin-exchange interactions with lattice-confined polar molecules. Nature 501, 521–525 (2013).
Wall, M. L., Hazzard, Okay. R. A. & Rey, A. M. in From Atomic to Mesoscale: The Position of Quantum Coherence in Techniques of Varied Complexities (eds Novikova, I. & Malinovskaya, S. A.) 3–38 (World Scientific, 2015).
Souza, A. M., Álvarez, G. A. & Suter, D. Sturdy dynamical decoupling. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 370, 4748–4769 (2012).
Chomaz, L. et al. Dipolar physics: a evaluation of experiments with magnetic quantum gases. Rep. Prog. Phys. 86, 026401 (2023).
Gilmore, Okay. A. et al. Quantum-enhanced sensing of displacements and electrical fields with two-dimensional trapped-ion crystals. Science 373, 673–678 (2021).
Koller, A. P., Mundinger, J., Wall, M. L. & Rey, A. M. Demagnetization dynamics of noninteracting trapped fermions. Phys. Rev. A 92, 033608 (2015).
Chew, Y. T. et al. Extremely-precise holographic optical tweezers array. Preprint at https://arxiv.org/abs/2407.20699 (2024).
Chew, Y. et al. Ultrafast vitality change between two single Rydberg atoms on a nanosecond timescale. Nat. Photon. 16, 724–729 (2022).
Aldegunde, J. & Hutson, J. M. Hyperfine construction of alkali-metal diatomic molecules. Phys. Rev. A 96, 042506 (2017).
Hofmann, H. F. Complementary classical fidelities as an environment friendly criterion for the analysis of experimentally realized quantum operations. Phys. Rev. Lett. 94, 160504 (2005).
Ma, S. et al. Excessive-fidelity gates and mid-circuit erasure conversion in an atomic qubit. Nature 622, 279–284 (2023).
Scholl, P. et al. Erasure conversion in a high-fidelity Rydberg quantum simulator. Nature 622, 273–278 (2023).
Sundar, B., Gadway, B. & Hazzard, Okay. R. A. Artificial dimensions in ultracold polar molecules. Sci. Rep. 8, 3422 (2018).
Homeier, L. et al. Antiferromagnetic bosonic t–J fashions and their quantum simulation in tweezer arrays. Phys. Rev. Lett. 132, 230401 (2024).
Kuznetsova, E., Rittenhouse, S. T., Sadeghpour, H. R. & Yelin, S. F. Rydberg-atom-mediated nondestructive readout of collective rotational states in polar-molecule arrays. Phys. Rev. A 94, 032325 (2016).
Wang, Okay., Williams, C. P., Picard, L. R. B., Yao, N. Y. & Ni, Okay.-Okay. Enriching the quantum toolbox of ultracold molecules with Rydberg atoms. PRX Quantum 3, 030339 (2022).
Guttridge, A. et al. Statement of Rydberg blockade because of the charge-dipole interplay between an atom and a polar molecule. Phys. Rev. Lett. 131, 013401 (2023).
Guardado-Sanchez, E. et al. Quench dynamics of a Fermi gasoline with robust nonlocal interactions. Phys. Rev. X 11, 021036 (2021).
Carroll, A. N. et al. Statement of generalized t-J spin dynamics with tunable dipolar interactions. Preprint at arxiv.org/abs/2404.18916 (2024).
Shaw, A. L. et al. Erasure-cooling, management, and hyper-entanglement of movement in optical tweezers. Preprint at arxiv.org/abs/2311.15580 (2023).
Vexiau, R. et al. Dynamic dipole polarizabilities of heteronuclear alkali dimers: optical response, trapping and management of ultracold molecules. Int. Rev. Phys. Chem. 36, 709–750 (2017).
Zhang, J. T. et al. Forming a single molecule by magnetoassociation in an optical tweezer. Phys. Rev. Lett. 124, 253401 (2020).
Picard, L. R. B. et al. Excessive decision photoassociation spectroscopy of the excited ({c}^{3}{Sigma }_{1}^{+}) potential of 23Na133Cs. Phys. Rev. Res. 5, 023149 (2023).
Boradjiev, I. I. & Vitanov, N. V. Management of qubits by formed pulses of finite length. Phys. Rev. A 88, 013402 (2013).
Clopper, C. J. & Pearson, E. S. The usage of confidence or fiducial limits illustrated within the case of the binomial. Biometrika 26, 404–413 (1934).
Sackett, C. A. et al. Experimental entanglement of 4 particles. Nature 404, 256–259 (2000).
Krämer, S., Plankensteiner, D., Ostermann, L. & Ritsch, H. QuantumOptics.jl: a Julia framework for simulating open quantum programs. Comput. Phys. Commun. 227, 109–116 (2018).
Singh, R. Okay., Senthilkumaran, P. & Singh, Okay. Tight focusing of vortex beams in presence of major astigmatism. J. Decide. Soc. Am. A 26, 576–588 (2009).
Colbert, D. T. & Miller, W. H. A novel discrete variable illustration for quantum mechanical reactive scattering through the S-matrix Kohn methodology. J. Chem. Phys. 96, 1982–1991 (1992).
Bezanson, J., Edelman, A., Karpinski, S. & Shah, V. B. Julia: a recent method to numerical computing. SIAM Rev. 59, 65–98 (2017).
Haegeman, J. Krylovkit (v0.8.1). Zenodo https://doi.org/10.5281/zenodo.12122079 (2024).
Efron, B. & Tibshirani, R. J. An Introduction to the Bootstrap (Chapman and Corridor, 1994).
Picard, L. R. et al. Experimental knowledge and simulation code for Entanglement and iSWAP gate between molecular qubits. Harvard Dataverse https://doi.org/10.7910/DVN/3UEBEV (2024).
Holland, C. M., Lu, Y., Li, S. J., Welsh, C. L. & Cheuk, L. W. Demonstration of erasure conversion in a molecular tweezer array. Preprint at https://arxiv.org/abs/2406.02391 (2024).