Baskaran, G. & Anderson, P. W. Gauge idea of high-temperature superconductors and strongly correlated Fermi techniques. Phys. Rev. B 37, 580–583 (1988).
Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Corridor impact. Rev. Mod. Phys. 82, 1539–1592 (2010).
Nagaosa, N. & Tokura, Y. Emergent electromagnetism in solids. Phys. Scr. 2012, 014020 (2012).
Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013).
Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).
Yu, X. Z. et al. Actual-space commentary of a two-dimensional skyrmion crystal. Nature 465, 901–904 (2010).
Neubauer, A. et al. Topological Corridor impact within the A section of MnSi. Phys. Rev. Lett. 102, 186602 (2009).
Zang, J., Mostovoy, M., Han, J. H. & Nagaosa, N. Dynamics of skyrmion crystals in metallic skinny movies. Phys. Rev. Lett. 107, 136804 (2011).
Schulz, T. et al. Emergent electrodynamics of skyrmions in a chiral magnet. Nat. Phys. 8, 301–304 (2012).
Kurumaji, T. et al. Skyrmion lattice with a large topological Corridor impact in a pissed off triangular-lattice magnet. Science 365, 914–918 (2019).
Hirschberger, M. et al. Excessive-field depinned section and planar Corridor impact within the skyrmion host Gd2PdSi3. Phys. Rev. B 101, 220401 (2020).
Cohen, E. et al. Geometric section from Aharonov–Bohm to Pancharatnam–Berry and past. Nat. Rev. Phys. 1, 437–449 (2019).
Aharonov, Y. & Bohm, D. Significance of electromagnetic potentials within the quantum idea. Phys. Rev. 115, 485–491 (1959).
Berry, M. V. Quantal section components accompanying adiabatic adjustments. Proc. R. Soc. A Lond. Math. Phys. Sci. 392, 45–57 (1997).
Xiao, D., Chang, M.-C. & Niu, Q. Berry section results on digital properties. Rev. Mod. Phys. 82, 1959–2007 (2010).
Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).
Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).
Ohgushi, Okay., Murakami, S. & Nagaosa, N. Spin anisotropy and quantum Corridor impact within the kagomé lattice: Chiral spin state primarily based on a ferromagnet. Phys. Rev. B 62, R6065–R6068 (2000).
Taguchi, Y., Oohara, Y., Yoshizawa, H., Nagaosa, N. & Tokura, Y. Spin chirality, Berry section, and anomalous Corridor impact in a pissed off ferromagnet. Science 291, 2573–2576 (2001).
Nagaosa, N. Emergent inductor by spiral magnets. Jpn. J. Appl. Phys. 58, 120909 (2019).
Yokouchi, T. et al. Emergent electromagnetic induction in a helical-spin magnet. Nature 586, 232–236 (2020).
Jiang, W. et al. Direct commentary of the skyrmion Corridor impact. Nat. Phys. 13, 162–169 (2017).
Litzius, Okay. et al. Skyrmion Corridor impact revealed by direct time-resolved X-ray microscopy. Nat. Phys. 13, 170–175 (2017).
Rößler, U. Okay., Bogdanov, A. N. & Pfleiderer, C. Spontaneous skyrmion floor states in magnetic metals. Nature 442, 797–801 (2006).
Heinze, S. et al. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat. Phys. 7, 713–718 (2011).
Moreau-Luchaire, C. et al. Additive interfacial chiral interplay in multilayers for stabilization of small particular person skyrmions at room temperature. Nat. Nanotechnol. 11, 444–448 (2016).
Matsui, A., Nomoto, T. & Arita, R. Skyrmion-size dependence of the topological Corridor impact: An actual-space calculation. Phys. Rev. B 104, 174432 (2021).
Kimbell, G., Kim, C., Wu, W., Cuoco, M. & Robinson, J. W. A. Challenges in figuring out chiral spin textures by way of the topological Corridor impact. Commun. Mater. 3, 19 (2022).
Woo, S. et al. Remark of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 15, 501–506 (2016).
Juge, R. et al. Present-driven skyrmion dynamics and drive-dependent skyrmion Corridor impact in an ultrathin movie. Phys. Rev. Appl. 12, 044007 (2019).
Peng, L. et al. Dynamic transition of current-driven single-skyrmion movement in a room-temperature chiral-lattice magnet. Nat. Commun. 12, 6797 (2021).
Hirschberger, M. et al. Skyrmion section and competing magnetic orders on a respiration kagomé lattice. Nat. Commun. 10, 5831 (2019).
Khanh, N. D. et al. Nanometric sq. skyrmion lattice in a centrosymmetric tetragonal magnet. Nat. Nanotechnol. 15, 444–449 (2020).
Takagi, R. et al. Sq. and rhombic lattices of magnetic skyrmions in a centrosymmetric binary compound. Nat. Commun. 13, 1472 (2022).
Okubo, T., Chung, S. & Kawamura, H. A number of-q states and the skyrmion lattice of the triangular-lattice Heisenberg antiferromagnet beneath magnetic fields. Phys. Rev. Lett. 108, 017206 (2012).
Leonov, A. O. & Mostovoy, M. Multiply periodic states and remoted skyrmions in an anisotropic pissed off magnet. Nat. Commun. 6, 8275 (2015).
Inosov, D. S. et al. Digital construction and nesting-driven enhancement of the RKKY interplay on the magnetic ordering propagation vector in Gd2PdSi3 and Tb2PdSi3. Phys. Rev. Lett. 102, 046401 (2009).
Hayami, S. & Motome, Y. A number of-Q instability by (d − 2)-dimensional connections of Fermi surfaces. Phys. Rev. B 90, 060402 (2014).
Wang, Z., Barros, Okay., Chern, G.-W., Maslov, D. L. & Batista, C. D. Resistivity minimal in extremely pissed off itinerant magnets. Phys. Rev. Lett. 117, 206601 (2016).
Iwasaki, J., Mochizuki, M. & Nagaosa, N. Common current-velocity relation of skyrmion movement in chiral magnets. Nat. Commun. 4, 1463 (2013).
Schütte, C., Iwasaki, J., Rosch, A. & Nagaosa, N. Inertia, diffusion, and dynamics of a pushed skyrmion. Phys. Rev. B 90, 174434 (2014).
Grüner, G. The dynamics of charge-density waves. Rev. Mod. Phys. 60, 1129–1181 (1988).
Metaxas, P. J. et al. Creep and movement regimes of magnetic domain-wall movement in ultrathin Pt/Co/Pt movies with perpendicular anisotropy. Phys. Rev. Lett. 99, 217208 (2007).
Anderson, P. W. & Kim, Y. B. Onerous superconductivity: idea of the movement of Abrikosov flux traces. Rev. Mod. Phys. 36, 39–43 (1964).
Fröhlich, H. On the speculation of superconductivity: the one-dimensional case. Proc. R. Soc. A Lond. Ser. Math. Phys. Eng. Sci. 223, 296–305 (1954).
Lee, P. A., Rice, T. M. & Anderson, P. W. Conductivity from cost or spin density waves. Stable State Commun. 14, 703–709 (1974).
Psaroudaki, C., Hoffman, S., Klinovaja, J. & Loss, D. Quantum dynamics of skyrmions in chiral magnets. Phys. Rev. X 7, 041045 (2017).
Iwasaki, J., Mochizuki, M. & Nagaosa, N. Present-induced skyrmion dynamics in constricted geometries. Nat. Nanotechnol. 8, 742–747 (2013).
Büttner, F. et al. Dynamics and inertia of skyrmionic spin constructions. Nat. Phys. 11, 225–228 (2015).
Birch, M. T. Dataset for: Dynamic transition and Galilean relativity of current-driven skyrmions. Zenodo https://doi.org/10.5281/zenodo.11408317 (2024).