Silver, J. & Miller, J. H. Regeneration past the glial scar. Nat. Rev. Neurosci. 5, 146–156 (2004).
Tran, A. P., Warren, P. M. & Silver, J. New insights into glial scar formation after spinal wire harm. Cell Tissue Res. 387, 319–336 (2021).
Johansson, C. B. et al. Identification of a neural stem cell within the grownup mammalian central nervous system. Cell 96, 25–34 (1999).
Meletis, Okay. et al. Spinal wire harm reveals multilineage differentiation of ependymal cells. PLoS Biol. 6, e182 (2008).
Sabelström, H. et al. Resident neural stem cells limit tissue harm and neuronal loss after spinal wire harm in mice. Science 342, 637–640 (2013).
Barnabé-Heider, F. et al. Origin of latest glial cells in intact and injured grownup spinal wire. Cell Stem Cell 7, 470–482 (2010).
Lacroix, S. et al. Central canal ependymal cells proliferate extensively in response to traumatic spinal wire harm however not demyelinating lesions. PLoS ONE 9, e85916 (2014).
New, L. E., Yanagawa, Y., McConkey, G. A., Deuchars, J. & Deuchars, S. A. GABAergic regulation of cell proliferation throughout the grownup mouse spinal wire. Neuropharmacology 223, 109326 (2023).
Vigh, B., Vigh-Teichmann, I., Manzano e Silva, M. J. & van den Pol, A. N. Cerebrospinal fluid-contacting neurons of the central canal and terminal ventricle in numerous vertebrates. Cell Tissue Res. 231, 615–621 (1983).
Huang, A. L. et al. The cells and logic for mammalian bitter style detection. Nature 442, 934–938 (2006).
Orts-Del’immagine, A. et al. Properties of subependymal cerebrospinal fluid contacting neurones within the dorsal vagal advanced of the mouse brainstem. J. Physiol. 590, 3719–3741 (2012).
Prendergast, A. E. et al. CSF-contacting neurons reply to Streptococcus pneumoniae and promote host survival throughout central nervous system an infection. Curr. Biol. https://doi.org/10.1016/J.CUB.2023.01.039 (2023).
Böhm, U. L. et al. CSF-contacting neurons regulate locomotion by relaying mechanical stimuli to spinal circuits. Nat. Commun. 7, 10866 (2016).
Sternberg, J. R. et al. Pkd2l1 is required for mechanoception in cerebrospinal fluid-contacting neurons and upkeep of backbone curvature. Nat. Commun. 9, 3804 (2018).
Orts-Del’Immagine, A. et al. A single polycystic kidney illness 2-like 1 channel opening acts as a spike generator in cerebrospinal fluid-contacting neurons of grownup mouse brainstem. Neuropharmacology 101, 549–565 (2016).
Johnson, E. et al. Graded spikes differentially sign neurotransmitter enter in cerebrospinal fluid contacting neurons of the mouse spinal wire. iScience 26, 105914 (2023).
Gerstmann, Okay. et al. The function of intraspinal sensory neurons within the management of quadrupedal locomotion. Curr. Biol. 32, 2442–2453.e4 (2022).
Djenoune, L. et al. The twin developmental origin of spinal cerebrospinal fluid-contacting neurons offers rise to distinct practical subtypes. Sci Rep. 7, 719 (2017).
Nakamura, Y. et al. Cerebrospinal fluid-contacting neuron tracing reveals structural and practical connectivity for locomotion within the mouse spinal wire. eLife 12, e83108 (2023).
Stoeckel, M.-E. et al. Cerebrospinal fluid-contacting neurons within the rat spinal wire, a γ-aminobutyric acidergic system expressing the P2X2 subunit of purinergic receptors, PSA-NCAM, and GAP-43 immunoreactivities: mild and electron microscopic research. J. Comp. Neurol. 457, 159–174 (2003).
Chavkin, C. Dynorphin — nonetheless an awfully potent opioid peptide. Mol. Pharmacol. 83, 729–736 (2013).
Khachaturian, H. et al. Dynorphin immunocytochemistry within the rat central nervous system. Peptides 3, 941–954 (1982).
Veldman, M. B. et al. Brainwide genetic sparse cell labeling to light up the morphology of neurons and glia with Cre-dependent MORF mice. Neuron 108, 111–127.e6 (2020).
Furube, E. et al. Neural stem cell phenotype of tanycyte-like ependymal cells within the circumventricular organs and central canal of grownup mouse mind. Sci. Rep. 10, 2826 (2020).
Brust, T. F. Biased ligands on the κ opioid receptor: fine-tuning receptor pharmacology. Handb. Exp. Pharmacol. 271, 115–135 (2022).
Bruchas, M. R. & Chavkin, C. Kinase cascades and ligand-directed signaling on the κ opioid receptor. Psychopharmacology 210, 137–147 (2010).
Eriksson, P. S., Nilsson, M., Wågberg, M., Hansson, E. & Rönnbäck, L. κ-Opioid receptors on astrocytes stimulate l-type Ca2+ channels. Neuroscience 54, 401–407 (1993).
Gurwell, J. A. et al. κ-Opioid receptor expression defines a phenotypically distinct subpopulation of astroglia: relationship to Ca2+ mobilization, improvement, and the antiproliferative impact of opioids. Mind Res. 737, 175–187 (1996).
Pan, Z. Z. Opioid receptor-mediated enhancement of the hyperpolarization-activated present (Ih) by means of mobilization of intracellular calcium in rat nucleus raphe magnus. J. Physiol. 548, 765–775 (2003).
Lai, J. et al. Dynorphin A prompts bradykinin receptors to take care of neuropathic ache. Nat. Neurosci. 9, 1534–1540 (2006).
Laughlin, T. M. et al. Spinally administered dynorphin A produces long-lasting allodynia: involvement of NMDA however not opioid receptors. Ache 72, 253–260 (1997).
Bakshi, R. & Faden, A. I. Aggressive and non-competitive NMDA antagonists restrict dynorphin A-induced rat hindlimb paralysis. Mind Res. 507, 1–5 (1990).
Zhang, S. et al. Dynorphin A as a possible endogenous ligand for 4 members of the opioid receptor gene household. J. Pharmacol. Exp. Ther. 286, 136–141 (1998).
Riondel, P. et al. Proof for 2 subpopulations of cerebrospinal-fluid contacting neurons with reverse GABAergic signaling in grownup mouse spinal wire. J. Neurosci. https://doi.org/10.1523/JNEUROSCI.2289-22.2024 (2024).
Corns, L. F. et al. Cholinergic enhancement of cell proliferation within the postnatal neurogenic area of interest of the mammalian spinal wire. Stem Cells 33, 2864–2876 (2015).
Hussein, S. A. Practical characterization of the TRP-type channel PKD2L1. ERA https://doi.org/10.7939/R3P84495F (2015).
Felix, R. Molecular regulation of voltage-gated Ca2+ channels. J. Recept. Sign Transduct. 25, 57–71 (2008).
Barber, R. P., Vaughn, J. E. & Roberts, E. The cytoarchitecture of GABAergic neurons in rat spinal wire. Mind Res. 238, 305–328 (1982).
Djenoune, L. et al. Investigation of spinal cerebrospinal fluid-contacting neurons expressing PKD2L1: proof for a conserved system from fish to primates. Entrance. Neuroanat. 8, 26 (2014).
Matson, Okay. J. E. et al. Single cell atlas of spinal wire harm in mice reveals a pro-regenerative signature in spinocerebellar neurons. Nat. Commun. 13, 5628 (2022).
Ren, Y. et al. Ependymal cell contribution to scar formation after spinal wire harm is minimal, native and depending on direct ependymal harm. Sci Rep. 7, 41122 (2017).
Corns, L. F., Deuchars, J. & Deuchars, S. A. GABAergic responses of mammalian ependymal cells within the central canal neurogenic area of interest of the postnatal spinal wire. Neurosci. Lett. 553, 57–62 (2013).
Kozono, H., Yoshitani, H. & Nakano, R. Submit-marketing surveillance research of the protection and efficacy of nalfurafine hydrochloride (Remitch® capsules 2.5 μg) in 3,762 hemodialysis sufferers with intractable pruritus. Int. J. Nephrol. Renovasc. Dis. 11, 9–24 (2018).
Bloodgood, D. W. et al. κ Opioid receptor and dynorphin signaling within the central amygdala regulates alcohol consumption. Mol. Psychiatry 26, 2187–2199 (2021).
Madisen, L. et al. A sturdy and high-throughput Cre reporting and characterization system for the entire mouse mind. Nat. Neurosci. 13, 133–140 (2010).
Krashes, M. J. et al. An excitatory paraventricular nucleus to AgRP neuron circuit that drives starvation. Nature 507, 238–242 (2014).
Gee, J. M. et al. Imaging exercise in neurons and glia with a Polr2a-based and Cre-dependent GCaMP5G-IRES-tdTomato reporter mouse. Neuron 83, 1058–1072 (2014).
Buch, T. et al. A Cre-inducible diphtheria toxin receptor mediates cell lineage ablation after toxin administration. Nat. Strategies 2, 419–426 (2005).
Arnold, Okay. et al. Sox2+ grownup stem and progenitor cells are essential for tissue regeneration and survival of mice. Cell Stem Cell 9, 317–329 (2011).
Edelstein, A. D. et al. Superior strategies of microscope management utilizing μManager software program. J. Biol. Strategies 1, e10 (2014).
Renier, N. et al. iDISCO: a easy, speedy methodology to immunolabel giant tissue samples for quantity imaging. Cell 159, 896–910 (2014).