Sunday, November 17, 2024
HomenatureExtremely dynamic gamma-ray emissions are widespread in tropical thunderclouds

Extremely dynamic gamma-ray emissions are widespread in tropical thunderclouds


  • Parks, G. Ok. et al. X‐ray enhancements detected throughout thunderstorm and lightning actions. Geophys. Res. Lett. 8, 1176–1179 (1981).

    Article 
    ADS 

    Google Scholar
     

  • Dwyer, J. R., Smith, D. M. & Cummer, S. A. Excessive-energy atmospheric physics: terrestrial gamma-ray flashes and associated phenomena. Area Sci. Rev. 173, 133–196 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kelley, N. A. et al. Relativistic electron avalanches as a thunderstorm discharge competing with lightning. Nat. Commun. 6, 7845 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ostgaard, N. et al. Gamma ray glow observations at 20-km altitude. J. Geophys. Res. Atmos. 124, 7236–7254 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kochkin, P. et al. In-flight statement of gamma ray glows by ILDAS. J. Geophys. Res. Atmos. 122, 12801–12811 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McCarthy, M. & Parks, G. Ok. Additional observations of X-rays inside thunderstorms. Geophys. Res. Lett. 12, 393–396 (1985).

    Article 
    ADS 

    Google Scholar
     

  • McCarthy, M. P. & Parks, G. Ok. On the modulation of X ray fluxes in thunderstorms. J. Geophys. Res. Atmos. 97, 5857–5864 (1992).

    Article 
    ADS 

    Google Scholar
     

  • Eack, Ok. B. & Beasley, W. H. Lengthy‐length X‐ray emissions noticed in thunderstorms. J. Geophys. Res. Atmos. 120, 6887–6897 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Eack, Ok. B. et al. X-ray pulses noticed above a mesoscale convective system. Geophys. Res. Lett. 23, 2915–2918 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Eack, Ok. B. et al. Preliminary outcomes from simultaneous statement of X rays and electrical fields in a thunderstorm. J. Geophys. Res. Atmos. 101, 29637–29640 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Eack, Ok. B. et al. Gamma-ray emissions noticed in a thunderstorm anvil. Geophys. Res. Lett. 27, 185–188 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Wada, Y. et al. Catalog of gamma-ray glows throughout 4 winter seasons in Japan. Phys. Rev. Res. 3, 043117 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Chilingarian, A. Thunderstorm floor enhancements—mannequin and relation to lightning flashes. J. Atmos. Sol. Terr. Phys. 107, 68–76 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Chilingarian, A., Mailyan, B. & Vanyan, L. Recovering of the power spectra of electrons and gamma rays coming from the thunderclouds. Atmos. Res. 114-115, 1–16 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Chilingarian, A., Hovsepyan, G. & Hovhannisyan, A. Particle bursts from thunderclouds: pure particle accelerators above our heads. Phys. Rev. D 83, 062001 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Chilingarian, A., Hovsepyan, G. & Vanyan, L. On the origin of the particle fluxes from the thunderclouds: power spectra evaluation. Europhys. Lett. 106, 59001 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Tsuchiya, H. et al. Hardening and termination of long-duration γ rays detected previous to lightning. Phys. Rev. Lett. 111, 015001 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsuchiya, H. et al. Lengthy-duration γ ray emissions from 2007 and 2008 winter thunderstorms. J. Geophys. Res. Atmos. 116, D09113 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Smith, D. M. et al. Terrestrial gamma-ray flashes noticed as much as 20 MeV. Science 07, 1085–1088 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Marisaldi, M. et al. Detection of terrestrial gamma ray flashes as much as 40 MeV by the AGILE satellite tv for pc. J. Geophys. Res. Area Phys. 115, A00E13 (2010).

    Article 

    Google Scholar
     

  • Briggs, M. S. et al. First outcomes on terrestrial gamma ray flashes from the Fermi Gamma‐ray Burst Monitor. J. Geophys. Res. Area Phys. 115, A07323 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Ostgaard, N. et al. First 10 months of TGF observations by ASIM. J. Geophys. Res. Atmos. 124, 14024–14036 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Dwyer, J. R. Positron clouds inside thunderstorms. J. Plasma Phys. 81, 475810405 (2015).

    Article 

    Google Scholar
     

  • Østgaard, N. et al. Flickering gamma-ray flashes, the lacking hyperlink between gamma glows and TGFs. Nature https://doi.org/10.1038/s41586-024-07893-0 (2024).

  • Tsuchiya, H. et al. Remark of thundercloud-related gamma rays and neutrons in Tibet. Phys. Rev. D 85, 092006 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Sarria, D. et al. Library of simulated gamma-ray glows and software to earlier airborne observations. J. Geophys. Res. Atmos. 128, e2022JD037956 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Wada, Y. et al. Damaging tour of floor electrical fields throughout gamma-ray glows in winter thunderstorms. J. Geophys. Res. Atmos. 128, e2023JD039354 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Enoto, T. et al. Photonuclear reactions triggered by lightning discharge. Nature 551, 481–484 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hansen, R. S. et al. How simulated fluence of photons from terrestrial gamma ray flashes at plane and balloon altitudes relies on preliminary parameters. J. Geophys. Res. Area Phys. 118, 2333–2339 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Østgaard, N. et al. The Modular X- and Gamma-Ray Sensor (MXGS) of the ASIM payload on the Worldwide Area Station. Area Sci. Rev. 215, 23 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Amiot, C. G. et al. Twin-polarization deconvolution and geophysical retrievals from the Superior Microwave Precipitation Radiometer throughout OLYMPEX/RADEX. J. Atmos. Ocean. Technol. 38, 607–628 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Leppert, Ok. D. & Cecil, D. J. Signatures of hydrometeor species from airborne passive microwave information for frequencies 10–183 GHz. J. Appl. Meteorol. Climatol. 54, 1313–1334 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Battaglia, A. et al. Utilizing a multiwavelength suite of microwave devices to analyze the microphysical construction of deep convective cores. J. Geophys. Res. Atmos. 121, 9356–9381 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heymsfield, G. M. et al. in Advances in Climate Radar Vol. 1 (eds Bringi, V. N., Mishra, Ok. V. & Thurai, M.) 231–282 (Establishment of Engineering and Expertise, 2024).

  • Bateman, M. G. et al. A low-noise, microprocessor-controlled, internally digitizing rotating-vane electrical discipline mill for airborne platforms. J. Atmos. Ocean. Technol. 24, 1245–1255 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Mach, D. M., Blakeslee, R. J., Bateman, M. G. & Bailey, J. C. Electrical fields, conductivity, and estimated currents from plane overflights of electrified clouds. J. Geophys. Res. Atmos. 114, D10204 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Mach, D. M., Blakeslee, R. J., Bateman, M. G. & Bailey, J. C. Comparisons of whole currents primarily based on storm location, polarity, and flash charges derived from excessive‐altitude plane overflights. J. Geophys. Res. Atmos. 115, D03201 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Schultz, C. J. et al. Distant sensing of electrical fields noticed inside winter precipitation through the 2020 Investigation of Microphysics and Precipitation for Atlantic Coast‐Threatening Snowstorms (IMPACTS) discipline marketing campaign. J. Geophys. Res. Atmos. 126, e2021JD034704 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Mach, D. M. & Koshak, W. J. Basic matrix inversion approach for the calibration of electrical discipline sensor arrays on plane platforms. J. Atmos. Ocean. Technol. 24, 1576–1587 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Nationwide Oceanic and Atmospheric Administration (NOAA) & Nationwide Aeronautics and Area Administration (NASA). GOES-R Sequence Product Definition and Customers’ Information (PUG), 27–28 (NOAA & NASA, 2019).

  • Thomas, R. J. et al. Observations of VHF supply powers radiated by lightning. Geophys. Res. Lett. 28, 143–146 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Agostinelli, S. et al. Geant4—a simulation toolkit. Nucl. Instrum. Strategies Phys. Res. A 506, 250–303 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dwyer, J. R. A basic restrict on electrical fields in air. Geophys. Res. Lett. 30, 2055 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Marisaldi, M. Knowledge used within the examine: Extremely dynamic gamma-ray emissions are widespread in tropical thunderclouds. Zenodo https://doi.org/10.5281/zenodo.12531291 (2024).

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments