Spinelli, J. B. & Haigis, M. C. The multifaceted contributions of mitochondria to mobile metabolism. Nat. Cell Biol. 20, 745–754 (2018).
Quintana-Cabrera, R. & Scorrano, L. Determinants and outcomes of mitochondrial dynamics. Mol. Cell 83, 857–876 (2023).
Schworer, S. et al. Proline biosynthesis is a vent for TGFβ-induced mitochondrial redox stress. EMBO J. 39, e103334 (2020).
Arnold, P. Ok. et al. A non-canonical tricarboxylic acid cycle underlies mobile identification. Nature 603, 477–481 (2022).
Linder, S. J. et al. Inhibition of the proline metabolism rate-limiting enzyme P5CS permits proliferation of glutamine-restricted most cancers cells. Nat. Metab. 5, 2131–2147 (2023).
Zhu, J. et al. Mitochondrial NADP(H) era is crucial for proline biosynthesis. Science 372, 968–972 (2021).
Pilley, S. E. et al. Lack of attachment promotes proline accumulation and excretion in most cancers cells. Sci. Adv. 9, eadh2023 (2023).
Lee, M. S. et al. Ornithine aminotransferase helps polyamine synthesis in pancreatic most cancers. Nature 616, 339–347 (2023).
Gohil, V. M. et al. Nutrient-sensitized screening for medication that shift vitality metabolism from mitochondrial respiration to glycolysis. Nat. Biotechnol. 28, 249–255 (2010).
Cai, X. et al. Lactate prompts the mitochondrial electron transport chain independently of its metabolism. Mol. Cell 83, 3904–3920 (2023).
Titov, D. V. et al. Complementation of mitochondrial electron transport chain by manipulation of the NAD+/NADH ratio. Science 352, 231–235 (2016).
Yang, Z. et al. Pyrroline-5-carboxylate synthase senses mobile stress and modulates metabolism by regulating mitochondrial respiration. Cell Demise Differ. 28, 303–319 (2021).
Zhang, B. et al. The proline synthesis enzyme P5CS types cytoophidia in Drosophila. J. Genet. Genomics 47, 131–143 (2020).
Zhong, J. et al. Structural foundation of dynamic P5CS filaments. eLife 11, e76107 (2022).
Chen, W. W., Freinkman, E., Wang, T., Birsoy, Ok. & Sabatini, D. M. Absolute quantification of matrix metabolites reveals the dynamics of mitochondrial metabolism. Cell 166, 1324–1337 (2016).
Edwards-Hicks, J. et al. MYC sensitises cells to apoptosis by driving energetic demand. Nat. Commun. 13, 4674 (2022).
Fischer-Zirnsak, B. et al. Recurrent de novo mutations affecting residue Arg138 of pyrroline-5-carboxylate synthase trigger a progeroid type of autosomal-dominant cutis laxa. Am. J. Hum. Genet. 97, 483–492 (2015).
Kamphorst, J. J. et al. Human pancreatic most cancers tumors are nutrient poor and tumor cells actively scavenge extracellular protein. Most cancers Res. 75, 544–553 (2015).
Bartman, C. R. et al. Gradual TCA flux and ATP manufacturing in main stable tumours however not metastases. Nature 614, 349–357 (2023).
Collins, T. J., Berridge, M. J., Lipp, P. & Bootman, M. D. Mitochondria are morphologically and functionally heterogeneous inside cells. EMBO J. 21, 1616–1627 (2002).
Benador, I. Y. et al. Mitochondria sure to lipid droplets have distinctive bioenergetics, composition, and dynamics that assist lipid droplet growth. Cell Metab. 27, 869–885 (2018).
Han, M. et al. Spatial mapping of mitochondrial networks and bioenergetics in lung most cancers. Nature 615, 712–719 (2023).
Carraro, M. et al. The distinctive cysteine of F-ATP synthase OSCP subunit participates in modulation of the permeability transition pore. Cell Rep. 32, 108095 (2020).
Branon, T. C. et al. Environment friendly proximity labeling in residing cells and organisms with TurboID. Nat. Biotechnol. 36, 880–887 (2018).
Luengo, A. et al. Elevated demand for NAD+ relative to ATP drives cardio glycolysis. Mol. Cell 81, 691–707 (2021).
Stephan, T. et al. MICOS meeting controls mitochondrial internal membrane reworking and crista junction redistribution to mediate cristae formation. EMBO J. 39, e104105 (2020).
Quintana-Cabrera, R. et al. The cristae modulator Optic atrophy 1 requires mitochondrial ATP synthase oligomers to safeguard mitochondrial perform. Nat. Commun. 9, 3399 (2018).
Cogliati, S. et al. Mitochondrial cristae form determines respiratory chain supercomplexes meeting and respiratory effectivity. Cell 155, 160–171 (2013).
Detmer, S. A. & Chan, D. C. Complementation between mouse Mfn1 and Mfn2 protects mitochondrial fusion defects brought on by CMT2A illness mutations. J. Cell Biol. 176, 405–414 (2007).
Giacomello, M., Pyakurel, A., Glytsou, C. & Scorrano, L. The cell biology of mitochondrial membrane dynamics. Nat. Rev. Mol. Cell Biol. 21, 204–224 (2020).
Yao, C.-H. et al. Mitochondrial fusion helps elevated oxidative phosphorylation throughout cell proliferation. eLife 8, e41351 (2019).
Yasuda, T., Ishihara, T., Ichimura, A. & Ishihara, N. Mitochondrial dynamics outline muscle fiber kind by modulating mobile metabolic pathways. Cell Rep. 42, 112434 (2023).
Hsu, Ok.-S. et al. Most cancers cell survival is determined by collagen uptake into tumor-associated stroma. Nat. Commun. 13, 7078 (2022).
Kleele, T. et al. Distinct fission signatures predict mitochondrial degradation or biogenesis. Nature 593, 435–439 (2021).
Rath, S. et al. MitoCarta3.0: an up to date mitochondrial proteome now with sub-organelle localization and pathway annotations. Nucleic Acids Res. 49, D1541–D1547 (2021).
Wei, M. C. et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and loss of life. Science 292, 727–730 (2001).
Osellame, L. D. et al. Cooperative and impartial roles of the Drp1 adaptors Mff, MiD49 and MiD51 in mitochondrial fission. J. Cell Sci. 129, 2170–2181 (2016).
Korobova, F., Gauvin, T. J. & Higgs, H. N. A job for myosin II in mammalian mitochondrial fission. Curr. Biol. 24, 409–414 (2014).
Adams, Ok. J. et al. Skyline for small molecules: a unifying software program package deal for quantitative metabolomics. J. Proteome Res. 19, 1447–1458 (2020).
Heinrich, P. et al. Correcting for pure isotope abundance and tracer impurity in MS-, MS/MS- and high-resolution-multiple-tracer-data from steady isotope labeling experiments with IsoCorrectoR. Sci. Rep. 8, 17910 (2018).
Chen, W. W., Freinkman, E. & Sabatini, D. M. Speedy immunopurification of mitochondria for metabolite profiling and absolute quantification of matrix metabolites. Nat. Protoc. 12, 2215–2231 (2017).
Cho, Ok. F. et al. Proximity labeling in mammalian cells with TurboID and split-TurboID. Nat. Protoc. 15, 3971–3999 (2020).
Vander Heiden, M. G., Chandel, N. S., Williamson, E. Ok., Schumacker, P. T. & Thompson, C. B. Bcl-xL regulates the membrane potential and quantity homeostasis of mitochondria. Cell 91, 627–637 (1997).