Wang, Q. Y. et al. Interface-induced high-temperature superconductivity in single unit-cell FeSe movies on SrTiO3. Chin. Phys. Lett. 29, 037402 (2012).
Lee, J. J. et al. Interfacial mode coupling because the origin of the enhancement of Tc in FeSe movies on SrTiO3. Nature 515, 245–248 (2014).
Peng, R. et al. Tuning the band construction and superconductivity in single-layer FeSe by interface engineering. Nat. Commun. 5, 5044 (2014).
Liu, X. et al. Dichotomy of the digital construction and superconductivity between single-layer and double-layer FeSe/SrTiO3 movies. Nat. Commun. 5, 5047 (2014).
Zhang, C. et al. Ubiquitous sturdy electron-phonon coupling on the interface of FeSe/SrTiO3. Nat. Commun. 8, 14468 (2017).
Shi, R. et al. Atomic-scale commentary of localized phonons at FeSe/SrTiO3 interface. Nat. Commun. 15, 3418 (2024).
Liu, D. et al. Digital origin of high-temperature superconductivity in single-layer FeSe superconductor. Nat. Commun. 3, 931 (2012).
Zhang, W. et al. Interface cost doping results on superconductivity of single-unit-cell FeSe movies on SrTiO3 substrates. Phys. Rev. B 89, 060506(R) (2014).
Zhang, H. et al. Origin of cost switch and enhanced electron-phonon coupling in single unit-cell FeSe movies on SrTiO3. Nat. Commun. 8, 214 (2017).
Miyata, Y., Nakayama, Okay., Sugawara, Okay., Sato, T. & Takahashi, T. Excessive-temperature superconductivity in potassium-coated multilayer FeSe skinny movies. Nat. Mater. 14, 775–779 (2015).
Lei, B. et al. Evolution of high-temperature superconductivity from a low-Tc section tuned by service focus in FeSe skinny flakes. Phys. Rev. Lett. 116, 077002 (2016).
Wen, C. H. P. et al. Anomalous correlation results and distinctive section diagram of electron-doped FeSe revealed by photoemission spectroscopy. Nat. Commun. 7, 10840 (2016).
Zhang, W. H. et al. Direct commentary of high-temperature superconductivity in one-unit-cell FeSe movies. Chin. Phys. Lett. 31, 017401 (2014).
Ge, J. F. et al. Superconductivity above 100 Okay in single-layer FeSe movies on doped SrTiO3. Nat. Mater. 14, 285–289 (2015).
He, S. et al. Part diagram and digital indication of high-temperature superconductivity at 65 Okay in single-layer FeSe movies. Nat. Mater. 12, 605–610 (2013).
Tan, S. et al. Interface-induced superconductivity and strain-dependent spin density waves in FeSe/SrTiO3 skinny movies. Nat. Mater. 12, 634–640 (2013).
Xu, Y. et al. Spectroscopic proof of superconductivity pairing at 83 Okay in single-layer FeSe/SrTiO3 movies. Nat. Commun. 12, 2840 (2021).
Fan, Q. et al. Plain s-wave superconductivity in single-layer FeSe on SrTiO3 probed by scanning tunnelling microscopy. Nat. Phys. 11, 946–952 (2015).
Tune, Q. et al. Proof of cooperative impact on the improved superconducting transition temperature on the FeSe/SrTiO3 interface. Nat. Commun. 10, 758 (2019).
Liu, C. et al. Excessive-order reproduction bands in monolayer FeSe/SrTiO3 revealed by polarization-dependent photoemission spectroscopy. Nat. Commun. 12, 4573 (2021).
Faeth, B. D. et al. Interfacial electron-phonon coupling constants extracted from intrinsic reproduction bands in monolayer FeSe/SrTiO3. Phys. Rev. Lett. 127, 016803 (2021).
Fuchs, R. & Kliewer, Okay. L. Optical modes of vibration in an ionic crystal slab. Phys. Rev. 140, A2076 (1965).
Zhang, S. et al. Position of SrTiO3 phonon penetrating into skinny FeSe movies within the enhancement of superconductivity. Phys. Rev. B 94, (2016).
Zhang, S. et al. Enhanced superconducting state in FeSe/SrTiO3 by a dynamic interfacial polaron mechanism. Phys. Rev. Lett. 122, 066802 (2019).
Li, F. et al. Atomically resolved FeSe/SrTiO3(001) interface construction by scanning transmission electron microscopy. 2D Mater. 3, 024002 (2016).
Sims, H. et al. Intrinsic interfacial van der Waals monolayers and their impact on the high-temperature superconductor FeSe/SrTiO3. Phys. Rev. B 100, 144103 (2019).
Peng, R. et al. Picoscale structural perception into superconductivity of monolayer FeSe/SrTiO3. Sci. Adv. 6, eaay4517 (2020).
Krivanek, O. L. et al. Vibrational spectroscopy within the electron microscope. Nature 514, 209–212 (2014).
Venkatraman, Okay., Levin, B. D. A., March, Okay., Rez, P. & Crozier, P. A. Vibrational spectroscopy at atomic decision with electron affect scattering. Nat. Phys. 15, 1237–1241 (2019).
Hage, F. S., Radtke, G., Kepaptsoglou, D. M., Lazzeri, M. & Ramasse, Q. M. Single-atom vibrational spectroscopy within the scanning transmission electron microscope. Science 367, 1124–1127 (2020).
Xu, M. et al. Single-atom vibrational spectroscopy with chemical-bonding sensitivity. Nat. Mater. 22, 612–618 (2023).
Yan, X. et al. Single-defect phonons imaged by electron microscopy. Nature 589, 65–69 (2021).
Yan, X. et al. Actual-space visualization of frequency-dependent anisotropy of atomic vibrations. Preprint at https://arxiv.org/abs/2312.01694 (2023).
Erdman, N. et al. The construction and chemistry of the TiO2-rich floor of SrTiO3 (001). Nature 419, 55–58 (2002).
Kubo, T. & Nozoye, H. Floor construction of SrTiO3(100). Surf. Sci. 542, 177–191 (2003).
Andersen, T. Okay., Fong, D. D. & Marks, L. D. Pauling’s guidelines for oxide surfaces. Surf. Sci. Rep. 73, 213–232 (2018).
Zou, Okay. et al. Position of double TiO2 layers on the interface of FeSe/SrTiO3 superconductors. Phys. Rev. B 93, 180506 (2016).
Pedersen, A. Okay. et al. Interfacial superconductivity in FeSe ultrathin movies on SrTiO3 probed by in situ independently pushed four-point-probe measurements. Phys. Rev. Lett. 124, 227002 (2020).
Hage, F. S., Kepaptsoglou, D. M., Ramasse, Q. M. & Allen, L. J. Phonon spectroscopy at atomic decision. Phys. Rev. Lett. 122, 016103 (2019).
Yang, H. et al. Inelastic electron scattering at giant angles: the phonon polariton contribution. Preprint at https://arxiv.org/abs/2401.04719 (2024).
Nicholls, R. J. et al. Idea of momentum-resolved phonon spectroscopy within the electron microscope. Phys. Rev. B 99, 094105 (2019).
Zeiger, P. M. & Rusz, J. Environment friendly and versatile mannequin for vibrational STEM-EELS. Phys. Rev. Lett. 124, 025501 (2020).
Rademaker, L., Wang, Y., Berlijn, T. & Johnston, S. Enhanced superconductivity as a result of ahead scattering in FeSe skinny movies on SrTiO3 substrates. New J. Phys. 18, 022001 (2016).
Rademaker, L., Alvarez-Suchini, G., Nakatsukasa, Okay., Wang, Y. & Johnston, S. Enhanced superconductivity in FeSe/SrTiO3 from the mixture of ahead scattering phonons and spin fluctuations. Phys. Rev. B 103, 144504 (2021).
Zhao, W. et al. Direct imaging of electron switch and its affect on superconducting pairing at FeSe/SrTiO3 interface. Sci. Adv. 4, eaao2682 (2018).
Lee, D. H. What makes the Tc of FeSe/SrTiO3 so excessive? Chin. Phys. B 24, 117405 (2015).
Kang, B. L. et al. Preformed Cooper pairs in layered FeSe-based superconductors. Phys. Rev. Lett. 125, 97003 (2020).
Faeth, B. D. et al. Incoherent Cooper pairing and pseudogap habits in single-layer FeSe/SrTiO3. Phys. Rev. X 11, 021054 (2021).
Ide, Okay., Tanaka, T., Pedersen, A., Ichinokura, S. & Hirahara, T. Temperature dependence of the superconducting hole of single-layer FeSe/SrTiO3: direct comparability between transport and spectroscopic measurements. Phys. Rev. Mater. 6, 124801 (2022).
Guan, J. et al. Superconducting transition of FeSe/SrTiO3 induced by adsorption of semiconducting natural molecules. Phys. Rev. B 95, 205405 (2017).
Qi, R. et al. 4-dimensional vibrational spectroscopy for nanoscale mapping of phonon dispersion in BN nanotubes. Nat. Commun. 12, 1179 (2021).
Hoglund, E. R. et al. Emergent interface vibrational construction of oxide superlattices. Nature 601, 556–561 (2022).
Batson, P. E. & Lagos, M. J. Interpretation of meV decision phonon EELS knowledge. Microsc. Microanal. 24, 412–413 (2018).
Blochl, P. E. Projector augmented-+rave methodology. Phys. Rev. B 50, 24 (1994).
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave methodology. Phys. Rev. B 59, 1758–1775 (1999).
Perdew, J. P. & Zunger, A. Self-interaction correction to density-functional approximations for many-electron techniques. Phys. Rev. B 23, 5048–5079 (1981).
Kresse, G. & Furthmüller, J. Environment friendly iterative schemes for ab initio total-energy calculations utilizing a plane-wave foundation set. Phys. Rev. B 54, 11169–11186 (1996).
Methfessel, M. & Paxton, A. T. Excessive-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 40, 3616–3621 (1989).
Baroni, S., De Gironcoli, S., Corso, A. D. & Giannozzi, P. Phonons and associated crystal properties from density-functional perturbation concept. Rev. Mod. Phys. 73, 515–562 (2001).
Gonze, X. First-principles responses of solids to atomic displacements and homogeneous electrical fields: Implementation of a conjugate-gradient algorithm. Phys. Rev. B 55, 10337–10354 (1997).
Gonze, X. & Lee, C. Dynamical matrices, Born efficient costs, dielectric permittivity tensors, and interatomic pressure constants from density-functional perturbation concept. Phys. Rev. B 55, 10355–10368 (1997).
Anisimov, V. I., Zaanen, J. & Andersen, O. Okay. Band concept and Mott insulators: Hubbard U as an alternative of Stoner I. Phys. Rev. B 44, 943–954 (1991).
Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software program venture for quantum simulations of supplies. J. Phys. Condens. Matter 21, 395502 (2009).
Perdew, J. P., Burke, Okay. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865–3868 (1996).
Mitchell, R. H., Chakhmouradian, A. R. & Woodward, P. M. Crystal chemistry of perovskite-type compounds within the tausonite-loparite sequence, (Sr1−2xNaxLax)TiO3. Phys. Chem. Miner. 27, 583–589 (2000).
Zeiger, P. M. & Rusz, J. Frequency-resolved frozen phonon multislice methodology and its software to vibrational electron power loss spectroscopy utilizing parallel illumination. Phys. Rev. B 104, 104301 (2021).
Chen, X., Kim, D. S. & LeBeau, J. M. A comparability of molecular dynamics potentials used to account for thermal diffuse scattering in multislice simulations. Ultramicroscopy 244, 113644 (2023).
Barthel, J. Dr. Probe: a software program for high-resolution STEM picture simulation. Ultramicroscopy 193, 1–11 (2018).